Cargando…

The Measurement and Treatment of Suppression in Amblyopia

Amblyopia, a developmental disorder of the visual cortex, is one of the leading causes of visual dysfunction in the working age population. Current estimates put the prevalence of amblyopia at approximately 1-3%(1-3), the majority of cases being monocular(2). Amblyopia is most frequently caused by o...

Descripción completa

Detalles Bibliográficos
Autores principales: Black, Joanna M., Hess, Robert F., Cooperstock, Jeremy R., To, Long, Thompson, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575204/
https://www.ncbi.nlm.nih.gov/pubmed/23271400
http://dx.doi.org/10.3791/3927
Descripción
Sumario:Amblyopia, a developmental disorder of the visual cortex, is one of the leading causes of visual dysfunction in the working age population. Current estimates put the prevalence of amblyopia at approximately 1-3%(1-3), the majority of cases being monocular(2). Amblyopia is most frequently caused by ocular misalignment (strabismus), blur induced by unequal refractive error (anisometropia), and in some cases by form deprivation. Although amblyopia is initially caused by abnormal visual input in infancy, once established, the visual deficit often remains when normal visual input has been restored using surgery and/or refractive correction. This is because amblyopia is the result of abnormal visual cortex development rather than a problem with the amblyopic eye itself(4,5) . Amblyopia is characterized by both monocular and binocular deficits(6,7) which include impaired visual acuity and poor or absent stereopsis respectively. The visual dysfunction in amblyopia is often associated with a strong suppression of the inputs from the amblyopic eye under binocular viewing conditions(8). Recent work has indicated that suppression may play a central role in both the monocular and binocular deficits associated with amblyopia(9,10) . Current clinical tests for suppression tend to verify the presence or absence of suppression rather than giving a quantitative measurement of the degree of suppression. Here we describe a technique for measuring amblyopic suppression with a compact, portable device(11,12) . The device consists of a laptop computer connected to a pair of virtual reality goggles. The novelty of the technique lies in the way we present visual stimuli to measure suppression. Stimuli are shown to the amblyopic eye at high contrast while the contrast of the stimuli shown to the non-amblyopic eye are varied. Patients perform a simple signal/noise task that allows for a precise measurement of the strength of excitatory binocular interactions. The contrast offset at which neither eye has a performance advantage is a measure of the "balance point" and is a direct measure of suppression. This technique has been validated psychophysically both in control(13,14) and patient(6,9,11) populations. In addition to measuring suppression this technique also forms the basis of a novel form of treatment to decrease suppression over time and improve binocular and often monocular function in adult patients with amblyopia(12,15,16) . This new treatment approach can be deployed either on the goggle system described above or on a specially modified iPod touch device(15).