Cargando…

Low heart-type fatty acid binding protein level during aging may protect down syndrome people against atherosclerosis

BACKGROUND: Aging is considered an important independent risk factor for atherosclerosis. Down syndrome people (DS) display an accelerated aging process compared to healthy subjects, anyway they are relatively resistant to developing atherosclerosis. The mechanisms involved in such protective effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Vianello, Elena, Dogliotti, Giada, Dozio, Elena, Romanelli, Massimiliano Marco Corsi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575247/
https://www.ncbi.nlm.nih.gov/pubmed/23339583
http://dx.doi.org/10.1186/1742-4933-10-2
Descripción
Sumario:BACKGROUND: Aging is considered an important independent risk factor for atherosclerosis. Down syndrome people (DS) display an accelerated aging process compared to healthy subjects, anyway they are relatively resistant to developing atherosclerosis. The mechanisms involved in such protective effect are not well known. Since heart-type fatty acid binding protein (H-FABP) is a protein involved in the transport of fatty acids and it has been recently correlated with the presence of atherosclerosis, we aimed to measure H-FABP level both in DS and in healthy subjects during aging to evaluate the association between this molecule, aging and atherosclerosis. FINDINGS: We quantified plasmatic H-FABP level in three groups of male DS and age-matched healthy subjects (children, age 2–14 years; adults, age 20–50 years; elderly, > 60 years) using a biochip array analyzer. We observed that aging is associated with increased H-FABP level in healthy subjects but not in DS which display both the same protein level in the different ages of life and have also lower level compared to their age-matched healthy subjects. CONCLUSION: Reduced H-FABP level during aging in DS may play a protective role against atherosclerosis. The potential involvement of H-FABP in the relationship between aging, atherosclerosis and development of coronary artery disease needs further investigations.