Cargando…

Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations

BACKGROUND: Clinical consequences of alignment errors in total knee replacement (TKR) have led to the rigorous evaluation of surgical alignment techniques. Rotational alignment in the transverse plane has proven particularly problematic, with errors due to component malalignment relative to bone ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Harman, Melinda K, Banks, Scott A, Kirschner, Stephan, Lützner, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575259/
https://www.ncbi.nlm.nih.gov/pubmed/23088451
http://dx.doi.org/10.1186/1471-2474-13-206
_version_ 1782259684257824768
author Harman, Melinda K
Banks, Scott A
Kirschner, Stephan
Lützner, Jörg
author_facet Harman, Melinda K
Banks, Scott A
Kirschner, Stephan
Lützner, Jörg
author_sort Harman, Melinda K
collection PubMed
description BACKGROUND: Clinical consequences of alignment errors in total knee replacement (TKR) have led to the rigorous evaluation of surgical alignment techniques. Rotational alignment in the transverse plane has proven particularly problematic, with errors due to component malalignment relative to bone anatomic landmarks and an overall mismatch between the femoral and tibial components’ relative positions. Ranges of nominal rotational alignment are not well defined, especially for the tibial component and for relative rotational mismatch, and some studies advocate the use of mobile-bearing TKR to accommodate the resulting small rotation errors. However, the relationships between prosthesis rotational alignment and mobile-bearing polyethylene insert motion are poorly understood. This prospective, in vivo study evaluates whether component malalignment and mismatch affect axial rotation motions during passive knee flexion after TKR. METHODS: Eighty patients were implanted with mobile-bearing TKR. Rotational alignment of the femoral and tibial components was measured from postoperative CT scans. All TKR were categorized into nominal or outlier groups based on defined norms for surgical rotational alignment relative to bone anatomic landmarks and relative rotational mismatch between the femoral and tibial components. Axial rotation motion of the femoral, tibial and polyethylene bearing components was measured from fluoroscopic images acquired during passive knee flexion. RESULTS: Axial rotation motion was generally accomplished in two phases, dominated by polyethylene bearing rotation on the tibial component in early to mid-flexion and then femoral component rotation on the polyethylene articular surface in later flexion. Opposite rotations of the femur-bearing and bearing-baseplate articulations were evident at flexion greater than 80°. Knees with outlier alignment had lower magnitudes of axial rotation and distinct transitions from external to internal rotation during mid-flexion. Knees with femoral-tibial rotational mismatch had significantly lower total axial rotation compared to knees with nominal alignment. CONCLUSIONS: Maintaining relative rotational mismatch within ±5° during TKR provided for controlled knee axial rotation during flexion. TKR with rotational alignment outside of defined surgical norms, with either positive or negative mismatch, experienced measurable kinematic differences and presented different patterns of axial rotation motions during passive knee flexion compared to TKR with nominal mismatch. These findings support previous studies linking prosthesis rotational alignment with inferior clinical and functional outcomes. TRIAL REGISTRATION: Clinical Trials NCT01022099
format Online
Article
Text
id pubmed-3575259
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35752592013-02-19 Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations Harman, Melinda K Banks, Scott A Kirschner, Stephan Lützner, Jörg BMC Musculoskelet Disord Research Article BACKGROUND: Clinical consequences of alignment errors in total knee replacement (TKR) have led to the rigorous evaluation of surgical alignment techniques. Rotational alignment in the transverse plane has proven particularly problematic, with errors due to component malalignment relative to bone anatomic landmarks and an overall mismatch between the femoral and tibial components’ relative positions. Ranges of nominal rotational alignment are not well defined, especially for the tibial component and for relative rotational mismatch, and some studies advocate the use of mobile-bearing TKR to accommodate the resulting small rotation errors. However, the relationships between prosthesis rotational alignment and mobile-bearing polyethylene insert motion are poorly understood. This prospective, in vivo study evaluates whether component malalignment and mismatch affect axial rotation motions during passive knee flexion after TKR. METHODS: Eighty patients were implanted with mobile-bearing TKR. Rotational alignment of the femoral and tibial components was measured from postoperative CT scans. All TKR were categorized into nominal or outlier groups based on defined norms for surgical rotational alignment relative to bone anatomic landmarks and relative rotational mismatch between the femoral and tibial components. Axial rotation motion of the femoral, tibial and polyethylene bearing components was measured from fluoroscopic images acquired during passive knee flexion. RESULTS: Axial rotation motion was generally accomplished in two phases, dominated by polyethylene bearing rotation on the tibial component in early to mid-flexion and then femoral component rotation on the polyethylene articular surface in later flexion. Opposite rotations of the femur-bearing and bearing-baseplate articulations were evident at flexion greater than 80°. Knees with outlier alignment had lower magnitudes of axial rotation and distinct transitions from external to internal rotation during mid-flexion. Knees with femoral-tibial rotational mismatch had significantly lower total axial rotation compared to knees with nominal alignment. CONCLUSIONS: Maintaining relative rotational mismatch within ±5° during TKR provided for controlled knee axial rotation during flexion. TKR with rotational alignment outside of defined surgical norms, with either positive or negative mismatch, experienced measurable kinematic differences and presented different patterns of axial rotation motions during passive knee flexion compared to TKR with nominal mismatch. These findings support previous studies linking prosthesis rotational alignment with inferior clinical and functional outcomes. TRIAL REGISTRATION: Clinical Trials NCT01022099 BioMed Central 2012-10-23 /pmc/articles/PMC3575259/ /pubmed/23088451 http://dx.doi.org/10.1186/1471-2474-13-206 Text en Copyright ©2012 Harman et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Harman, Melinda K
Banks, Scott A
Kirschner, Stephan
Lützner, Jörg
Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations
title Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations
title_full Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations
title_fullStr Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations
title_full_unstemmed Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations
title_short Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations
title_sort prosthesis alignment affects axial rotation motion after total knee replacement: a prospective in vivo study combining computed tomography and fluoroscopic evaluations
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575259/
https://www.ncbi.nlm.nih.gov/pubmed/23088451
http://dx.doi.org/10.1186/1471-2474-13-206
work_keys_str_mv AT harmanmelindak prosthesisalignmentaffectsaxialrotationmotionaftertotalkneereplacementaprospectiveinvivostudycombiningcomputedtomographyandfluoroscopicevaluations
AT banksscotta prosthesisalignmentaffectsaxialrotationmotionaftertotalkneereplacementaprospectiveinvivostudycombiningcomputedtomographyandfluoroscopicevaluations
AT kirschnerstephan prosthesisalignmentaffectsaxialrotationmotionaftertotalkneereplacementaprospectiveinvivostudycombiningcomputedtomographyandfluoroscopicevaluations
AT lutznerjorg prosthesisalignmentaffectsaxialrotationmotionaftertotalkneereplacementaprospectiveinvivostudycombiningcomputedtomographyandfluoroscopicevaluations