Cargando…
Task-Related Suppression of the Brainstem Frequency following Response
Recent evidence has shown top-down modulation of the brainstem frequency following response (FFR), generally in the form of signal enhancement from concurrent stimuli or from switching between attention-demanding task stimuli. However, it is also possible that the opposite may be true – the addition...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575437/ https://www.ncbi.nlm.nih.gov/pubmed/23441150 http://dx.doi.org/10.1371/journal.pone.0055215 |
Sumario: | Recent evidence has shown top-down modulation of the brainstem frequency following response (FFR), generally in the form of signal enhancement from concurrent stimuli or from switching between attention-demanding task stimuli. However, it is also possible that the opposite may be true – the addition of a task, instead of a resting, passive state may suppress the FFR. Here we examined the influence of a subsequent task, and the relevance of the task modality, on signal clarity within the FFR. Participants performed visual and auditory discrimination tasks in the presence of an irrelevant background sound, as well as a baseline consisting of the same background stimuli in the absence of a task. FFR pitch strength and amplitude of the primary frequency response were assessed within non-task stimulus periods in order to examine influences due solely to general cognitive state, independent of stimulus-driven effects. Results show decreased signal clarity with the addition of a task, especially within the auditory modality. We additionally found consistent relationships between the extent of this suppressive effect and perceptual measures such as response time and proclivity towards one sensory modality. Together these results suggest that the current focus of attention can have a global, top-down effect on the quality of encoding early in the auditory pathway. |
---|