Cargando…

Protein Sulfhydryl Group Oxidation and Mixed-Disulfide Modifications in Stable and Unstable Human Carotid Plaques

Objectives. Oxidative stress has been implicated in the outcome of atherosclerotic plaques. However, at present, no data are available neither on the degree of plaque protein sulfhydryl groups oxidation nor on its relationship with plaque vulnerability. We investigated the entity of protein-SH oxida...

Descripción completa

Detalles Bibliográficos
Autores principales: Lepedda, Antonio Junior, Zinellu, Angelo, Nieddu, Gabriele, Zinellu, Elisabetta, Carru, Ciriaco, Spirito, Rita, Guarino, Anna, De Muro, Pierina, Formato, Marilena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575616/
https://www.ncbi.nlm.nih.gov/pubmed/23431411
http://dx.doi.org/10.1155/2013/403973
Descripción
Sumario:Objectives. Oxidative stress has been implicated in the outcome of atherosclerotic plaques. However, at present, no data are available neither on the degree of plaque protein sulfhydryl groups oxidation nor on its relationship with plaque vulnerability. We investigated the entity of protein-SH oxidative modifications, focusing on low molecular weight thiols adduction, in human carotid plaque extracts in relation to plaque stability/instability. Methods. Plaque stability/instability was histologically assessed. The extent of protein-SH oxidative modifications was established by a differential proteomic approach on fluorescein-5-maleimide-labeled plaque extracts and corresponding plasma samples from 48 endarterectomized patients. The analysis on protein thiolation was performed by capillary zone electrophoresis. Results. We observed a higher protein-SH oxidation of both plasma-derived and topically expressed proteins in unstable plaques, partly due to higher levels of S-thiolation. Conversely, in plasma, none of the investigated parameters discriminated among patients with stable and unstable plaques. Conclusions. Our results suggest the presence of a more pronounced oxidative environment in unstable plaques. Identifying specific oxidative modifications and understanding their effects on protein function could provide further insight into the relevance of oxidative stress in atherosclerosis.