Cargando…
Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy
Objective: To investigate whether microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy (HSLE). Methods: The brain tissues were collected from 4 HSLE patients and 5 controls and then fixed in 4% paraformaldehyde. The frontal lobe, corpus callosum and c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575625/ https://www.ncbi.nlm.nih.gov/pubmed/23423584 http://dx.doi.org/10.7150/ijms.4830 |
_version_ | 1782259761023025152 |
---|---|
author | Yin, Ruixue Lu, Changjun Chen, Qiang Fan, Jianzhong Lu, Jiangyang |
author_facet | Yin, Ruixue Lu, Changjun Chen, Qiang Fan, Jianzhong Lu, Jiangyang |
author_sort | Yin, Ruixue |
collection | PubMed |
description | Objective: To investigate whether microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy (HSLE). Methods: The brain tissues were collected from 4 HSLE patients and 5 controls and then fixed in 4% paraformaldehyde. The frontal lobe, corpus callosum and cerebellum were separated. The expressions of myelin base protein (MBP) and CD34 were detected by immunohistochemistry. TUNEL staining was applied to detect cell apoptosis. The correlation between microvascular changes and pathological vacuoles was evaluated. Results: No obvious abnormalities were found in the brain of controls. Immunohistochemistry for MBP showed the collapse and fracture of myelin sheath and vacuole formation in the subcortical white matter, corpus callosum, and cerebellar white matter of HSLE patients. TUNEL staining showed the number of apoptotic cells in the cerebellar white matter and corpus callosum of HSLE patients was significantly higher than that in controls (F=389.451, P<0.001). Masson's trichrome staining revealed vacuolar degeneration in the cerebral white matter of HSLE patients, and the vacuoles were distributed around the microvessels. Immunohistochemistry revealed CD34 positive cells were seldom found besides the vessels in the cerebellar white matter and corpus callosum of HSLE patients, but a variety of CD34 positive cells was found in the vascular wall of controls (F=838.500, P<0.001). Conclusion: Apoptosis of oligodendrocytes may be related to the HSLE. Cerebral vascular injury and microcirculation dysfunction are involved in the pathogenesis of HSLE. The interrelation between apoptosis of oligodendrocytes and the microvascular damage are required to be studied in future investigations. |
format | Online Article Text |
id | pubmed-3575625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-35756252013-02-19 Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy Yin, Ruixue Lu, Changjun Chen, Qiang Fan, Jianzhong Lu, Jiangyang Int J Med Sci Research Paper Objective: To investigate whether microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy (HSLE). Methods: The brain tissues were collected from 4 HSLE patients and 5 controls and then fixed in 4% paraformaldehyde. The frontal lobe, corpus callosum and cerebellum were separated. The expressions of myelin base protein (MBP) and CD34 were detected by immunohistochemistry. TUNEL staining was applied to detect cell apoptosis. The correlation between microvascular changes and pathological vacuoles was evaluated. Results: No obvious abnormalities were found in the brain of controls. Immunohistochemistry for MBP showed the collapse and fracture of myelin sheath and vacuole formation in the subcortical white matter, corpus callosum, and cerebellar white matter of HSLE patients. TUNEL staining showed the number of apoptotic cells in the cerebellar white matter and corpus callosum of HSLE patients was significantly higher than that in controls (F=389.451, P<0.001). Masson's trichrome staining revealed vacuolar degeneration in the cerebral white matter of HSLE patients, and the vacuoles were distributed around the microvessels. Immunohistochemistry revealed CD34 positive cells were seldom found besides the vessels in the cerebellar white matter and corpus callosum of HSLE patients, but a variety of CD34 positive cells was found in the vascular wall of controls (F=838.500, P<0.001). Conclusion: Apoptosis of oligodendrocytes may be related to the HSLE. Cerebral vascular injury and microcirculation dysfunction are involved in the pathogenesis of HSLE. The interrelation between apoptosis of oligodendrocytes and the microvascular damage are required to be studied in future investigations. Ivyspring International Publisher 2013-02-01 /pmc/articles/PMC3575625/ /pubmed/23423584 http://dx.doi.org/10.7150/ijms.4830 Text en © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. |
spellingShingle | Research Paper Yin, Ruixue Lu, Changjun Chen, Qiang Fan, Jianzhong Lu, Jiangyang Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy |
title | Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy |
title_full | Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy |
title_fullStr | Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy |
title_full_unstemmed | Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy |
title_short | Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy |
title_sort | microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575625/ https://www.ncbi.nlm.nih.gov/pubmed/23423584 http://dx.doi.org/10.7150/ijms.4830 |
work_keys_str_mv | AT yinruixue microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy AT luchangjun microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy AT chenqiang microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy AT fanjianzhong microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy AT lujiangyang microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy |