Cargando…

Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy

Objective: To investigate whether microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy (HSLE). Methods: The brain tissues were collected from 4 HSLE patients and 5 controls and then fixed in 4% paraformaldehyde. The frontal lobe, corpus callosum and c...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Ruixue, Lu, Changjun, Chen, Qiang, Fan, Jianzhong, Lu, Jiangyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575625/
https://www.ncbi.nlm.nih.gov/pubmed/23423584
http://dx.doi.org/10.7150/ijms.4830
_version_ 1782259761023025152
author Yin, Ruixue
Lu, Changjun
Chen, Qiang
Fan, Jianzhong
Lu, Jiangyang
author_facet Yin, Ruixue
Lu, Changjun
Chen, Qiang
Fan, Jianzhong
Lu, Jiangyang
author_sort Yin, Ruixue
collection PubMed
description Objective: To investigate whether microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy (HSLE). Methods: The brain tissues were collected from 4 HSLE patients and 5 controls and then fixed in 4% paraformaldehyde. The frontal lobe, corpus callosum and cerebellum were separated. The expressions of myelin base protein (MBP) and CD34 were detected by immunohistochemistry. TUNEL staining was applied to detect cell apoptosis. The correlation between microvascular changes and pathological vacuoles was evaluated. Results: No obvious abnormalities were found in the brain of controls. Immunohistochemistry for MBP showed the collapse and fracture of myelin sheath and vacuole formation in the subcortical white matter, corpus callosum, and cerebellar white matter of HSLE patients. TUNEL staining showed the number of apoptotic cells in the cerebellar white matter and corpus callosum of HSLE patients was significantly higher than that in controls (F=389.451, P<0.001). Masson's trichrome staining revealed vacuolar degeneration in the cerebral white matter of HSLE patients, and the vacuoles were distributed around the microvessels. Immunohistochemistry revealed CD34 positive cells were seldom found besides the vessels in the cerebellar white matter and corpus callosum of HSLE patients, but a variety of CD34 positive cells was found in the vascular wall of controls (F=838.500, P<0.001). Conclusion: Apoptosis of oligodendrocytes may be related to the HSLE. Cerebral vascular injury and microcirculation dysfunction are involved in the pathogenesis of HSLE. The interrelation between apoptosis of oligodendrocytes and the microvascular damage are required to be studied in future investigations.
format Online
Article
Text
id pubmed-3575625
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-35756252013-02-19 Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy Yin, Ruixue Lu, Changjun Chen, Qiang Fan, Jianzhong Lu, Jiangyang Int J Med Sci Research Paper Objective: To investigate whether microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy (HSLE). Methods: The brain tissues were collected from 4 HSLE patients and 5 controls and then fixed in 4% paraformaldehyde. The frontal lobe, corpus callosum and cerebellum were separated. The expressions of myelin base protein (MBP) and CD34 were detected by immunohistochemistry. TUNEL staining was applied to detect cell apoptosis. The correlation between microvascular changes and pathological vacuoles was evaluated. Results: No obvious abnormalities were found in the brain of controls. Immunohistochemistry for MBP showed the collapse and fracture of myelin sheath and vacuole formation in the subcortical white matter, corpus callosum, and cerebellar white matter of HSLE patients. TUNEL staining showed the number of apoptotic cells in the cerebellar white matter and corpus callosum of HSLE patients was significantly higher than that in controls (F=389.451, P<0.001). Masson's trichrome staining revealed vacuolar degeneration in the cerebral white matter of HSLE patients, and the vacuoles were distributed around the microvessels. Immunohistochemistry revealed CD34 positive cells were seldom found besides the vessels in the cerebellar white matter and corpus callosum of HSLE patients, but a variety of CD34 positive cells was found in the vascular wall of controls (F=838.500, P<0.001). Conclusion: Apoptosis of oligodendrocytes may be related to the HSLE. Cerebral vascular injury and microcirculation dysfunction are involved in the pathogenesis of HSLE. The interrelation between apoptosis of oligodendrocytes and the microvascular damage are required to be studied in future investigations. Ivyspring International Publisher 2013-02-01 /pmc/articles/PMC3575625/ /pubmed/23423584 http://dx.doi.org/10.7150/ijms.4830 Text en © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
spellingShingle Research Paper
Yin, Ruixue
Lu, Changjun
Chen, Qiang
Fan, Jianzhong
Lu, Jiangyang
Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy
title Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy
title_full Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy
title_fullStr Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy
title_full_unstemmed Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy
title_short Microvascular Damage Is Involved in the Pathogenesis of Heroin Induced Spongiform Leukoencephalopathy
title_sort microvascular damage is involved in the pathogenesis of heroin induced spongiform leukoencephalopathy
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575625/
https://www.ncbi.nlm.nih.gov/pubmed/23423584
http://dx.doi.org/10.7150/ijms.4830
work_keys_str_mv AT yinruixue microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy
AT luchangjun microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy
AT chenqiang microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy
AT fanjianzhong microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy
AT lujiangyang microvasculardamageisinvolvedinthepathogenesisofheroininducedspongiformleukoencephalopathy