Cargando…
Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling
The gastrointestinal (GI) tract defines the digestive system and is composed of the stomach, intestine and colon. Among the major cell types lining radially along the GI tract are the epithelium, mucosa, smooth muscles and enteric neurons. The Hedgehog (Hh) pathway has been implicated in directing v...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575649/ https://www.ncbi.nlm.nih.gov/pubmed/23429478 http://dx.doi.org/10.1242/bio.20123186 |
_version_ | 1782259764101644288 |
---|---|
author | Biau, Sandrine Jin, Shiying Fan, Chen-Ming |
author_facet | Biau, Sandrine Jin, Shiying Fan, Chen-Ming |
author_sort | Biau, Sandrine |
collection | PubMed |
description | The gastrointestinal (GI) tract defines the digestive system and is composed of the stomach, intestine and colon. Among the major cell types lining radially along the GI tract are the epithelium, mucosa, smooth muscles and enteric neurons. The Hedgehog (Hh) pathway has been implicated in directing various aspects of the developing GI tract, notably the mucosa and smooth muscle growth, and enteric neuron patterning, while the Ret signaling pathway is selectively required for enteric neuron migration, proliferation, and differentiation. The growth arrest specific gene 1 (Gas1) encodes a GPI-anchored membrane protein known to bind to Sonic Hh (Shh), Indian Hh (Ihh), and Ret. However, its role in the GI tract has not been examined. Here we show that the Gas1 mutant GI tract, compared to the control, is shorter, has thinner smooth muscles, and contains more enteric progenitors that are abnormally distributed. These phenotypes are similar to those of the Shh mutant, supporting that Gas1 mediates most of the Shh activity in the GI tract. Because Gas1 has been shown to inhibit Ret signaling elicited by Glial cell line-derived neurotrophic factor (Gdnf), we explored whether Gas1 mutant enteric neurons displayed any alteration of Ret signaling levels. Indeed, isolated mutant enteric progenitors not only showed increased levels of phospho-Ret and its downstream effectors, phospho-Akt and phospho-Erk, but also displayed altered responses to Gdnf and Shh. We therefore conclude that phenotypes observed in the Gas1 mutant are due to a combination of reduced Hh signaling and increased Ret signaling. |
format | Online Article Text |
id | pubmed-3575649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The Company of Biologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-35756492013-02-21 Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling Biau, Sandrine Jin, Shiying Fan, Chen-Ming Biol Open Research Article The gastrointestinal (GI) tract defines the digestive system and is composed of the stomach, intestine and colon. Among the major cell types lining radially along the GI tract are the epithelium, mucosa, smooth muscles and enteric neurons. The Hedgehog (Hh) pathway has been implicated in directing various aspects of the developing GI tract, notably the mucosa and smooth muscle growth, and enteric neuron patterning, while the Ret signaling pathway is selectively required for enteric neuron migration, proliferation, and differentiation. The growth arrest specific gene 1 (Gas1) encodes a GPI-anchored membrane protein known to bind to Sonic Hh (Shh), Indian Hh (Ihh), and Ret. However, its role in the GI tract has not been examined. Here we show that the Gas1 mutant GI tract, compared to the control, is shorter, has thinner smooth muscles, and contains more enteric progenitors that are abnormally distributed. These phenotypes are similar to those of the Shh mutant, supporting that Gas1 mediates most of the Shh activity in the GI tract. Because Gas1 has been shown to inhibit Ret signaling elicited by Glial cell line-derived neurotrophic factor (Gdnf), we explored whether Gas1 mutant enteric neurons displayed any alteration of Ret signaling levels. Indeed, isolated mutant enteric progenitors not only showed increased levels of phospho-Ret and its downstream effectors, phospho-Akt and phospho-Erk, but also displayed altered responses to Gdnf and Shh. We therefore conclude that phenotypes observed in the Gas1 mutant are due to a combination of reduced Hh signaling and increased Ret signaling. The Company of Biologists 2012-11-20 /pmc/articles/PMC3575649/ /pubmed/23429478 http://dx.doi.org/10.1242/bio.20123186 Text en © 2012. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by-nc-sa/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Article Biau, Sandrine Jin, Shiying Fan, Chen-Ming Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling |
title | Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling |
title_full | Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling |
title_fullStr | Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling |
title_full_unstemmed | Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling |
title_short | Gastrointestinal defects of the Gas1 mutant involve dysregulated Hedgehog and Ret signaling |
title_sort | gastrointestinal defects of the gas1 mutant involve dysregulated hedgehog and ret signaling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575649/ https://www.ncbi.nlm.nih.gov/pubmed/23429478 http://dx.doi.org/10.1242/bio.20123186 |
work_keys_str_mv | AT biausandrine gastrointestinaldefectsofthegas1mutantinvolvedysregulatedhedgehogandretsignaling AT jinshiying gastrointestinaldefectsofthegas1mutantinvolvedysregulatedhedgehogandretsignaling AT fanchenming gastrointestinaldefectsofthegas1mutantinvolvedysregulatedhedgehogandretsignaling |