Cargando…

Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2

Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent. Recombinant human Apo2L/TRAIL has been under clinical trials, whereas various kinds of malignant tumors have resistance to Apo2L/TRAIL. We and others have shown that several a...

Descripción completa

Detalles Bibliográficos
Autores principales: Oishi, Masakatsu, Iizumi, Yosuke, Taniguchi, Tomoyuki, Goi, Wakana, Miki, Tsuneharu, Sakai, Toshiyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576345/
https://www.ncbi.nlm.nih.gov/pubmed/23431365
http://dx.doi.org/10.1371/journal.pone.0055922
_version_ 1782259844394254336
author Oishi, Masakatsu
Iizumi, Yosuke
Taniguchi, Tomoyuki
Goi, Wakana
Miki, Tsuneharu
Sakai, Toshiyuki
author_facet Oishi, Masakatsu
Iizumi, Yosuke
Taniguchi, Tomoyuki
Goi, Wakana
Miki, Tsuneharu
Sakai, Toshiyuki
author_sort Oishi, Masakatsu
collection PubMed
description Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent. Recombinant human Apo2L/TRAIL has been under clinical trials, whereas various kinds of malignant tumors have resistance to Apo2L/TRAIL. We and others have shown that several anticancer agents and flavonoids overcome resistance to Apo2L/TRAIL by upregulating death receptor 5 (DR5) in malignant tumor cells. However, the mechanisms by which these compounds induce DR5 expression remain unknown. Here we show that the dietary flavonoid apigenin binds and inhibits adenine nucleotide translocase-2 (ANT2), resulting in enhancement of Apo2L/TRAIL-induced apoptosis by upregulation of DR5. Apigenin and genistein, which are major flavonoids, enhanced Apo2L/TRAIL-induced apoptosis in cancer cells. Apigenin induced DR5 expression, but genistein did not. Using our method identifying the direct targets of flavonoids, we compared the binding proteins of apigenin with those of genistein. We discovered that ANT2 was a target of apigenin, but not genistein. Similarly to apigenin, knockdown of ANT2 enhanced Apo2L/TRAIL-induced apoptosis by upregulating DR5 expression at the post-transcriptional level. Moreover, silencing of ANT2 attenuated the enhancement of Apo2L/TRAIL-induced apoptosis by apigenin. These results suggest that apigenin upregulates DR5 and enhances Apo2L/TRAIL-induced apoptosis by binding and inhibiting ANT2. We propose that ANT2 inhibitors may contribute to Apo2L/TRAIL therapy.
format Online
Article
Text
id pubmed-3576345
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35763452013-02-21 Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2 Oishi, Masakatsu Iizumi, Yosuke Taniguchi, Tomoyuki Goi, Wakana Miki, Tsuneharu Sakai, Toshiyuki PLoS One Research Article Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent. Recombinant human Apo2L/TRAIL has been under clinical trials, whereas various kinds of malignant tumors have resistance to Apo2L/TRAIL. We and others have shown that several anticancer agents and flavonoids overcome resistance to Apo2L/TRAIL by upregulating death receptor 5 (DR5) in malignant tumor cells. However, the mechanisms by which these compounds induce DR5 expression remain unknown. Here we show that the dietary flavonoid apigenin binds and inhibits adenine nucleotide translocase-2 (ANT2), resulting in enhancement of Apo2L/TRAIL-induced apoptosis by upregulation of DR5. Apigenin and genistein, which are major flavonoids, enhanced Apo2L/TRAIL-induced apoptosis in cancer cells. Apigenin induced DR5 expression, but genistein did not. Using our method identifying the direct targets of flavonoids, we compared the binding proteins of apigenin with those of genistein. We discovered that ANT2 was a target of apigenin, but not genistein. Similarly to apigenin, knockdown of ANT2 enhanced Apo2L/TRAIL-induced apoptosis by upregulating DR5 expression at the post-transcriptional level. Moreover, silencing of ANT2 attenuated the enhancement of Apo2L/TRAIL-induced apoptosis by apigenin. These results suggest that apigenin upregulates DR5 and enhances Apo2L/TRAIL-induced apoptosis by binding and inhibiting ANT2. We propose that ANT2 inhibitors may contribute to Apo2L/TRAIL therapy. Public Library of Science 2013-02-19 /pmc/articles/PMC3576345/ /pubmed/23431365 http://dx.doi.org/10.1371/journal.pone.0055922 Text en © 2013 Oishi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Oishi, Masakatsu
Iizumi, Yosuke
Taniguchi, Tomoyuki
Goi, Wakana
Miki, Tsuneharu
Sakai, Toshiyuki
Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2
title Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2
title_full Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2
title_fullStr Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2
title_full_unstemmed Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2
title_short Apigenin Sensitizes Prostate Cancer Cells to Apo2L/TRAIL by Targeting Adenine Nucleotide Translocase-2
title_sort apigenin sensitizes prostate cancer cells to apo2l/trail by targeting adenine nucleotide translocase-2
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576345/
https://www.ncbi.nlm.nih.gov/pubmed/23431365
http://dx.doi.org/10.1371/journal.pone.0055922
work_keys_str_mv AT oishimasakatsu apigeninsensitizesprostatecancercellstoapo2ltrailbytargetingadeninenucleotidetranslocase2
AT iizumiyosuke apigeninsensitizesprostatecancercellstoapo2ltrailbytargetingadeninenucleotidetranslocase2
AT taniguchitomoyuki apigeninsensitizesprostatecancercellstoapo2ltrailbytargetingadeninenucleotidetranslocase2
AT goiwakana apigeninsensitizesprostatecancercellstoapo2ltrailbytargetingadeninenucleotidetranslocase2
AT mikitsuneharu apigeninsensitizesprostatecancercellstoapo2ltrailbytargetingadeninenucleotidetranslocase2
AT sakaitoshiyuki apigeninsensitizesprostatecancercellstoapo2ltrailbytargetingadeninenucleotidetranslocase2