Cargando…
Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions
BACKGROUND: Polyporus umbellatus sclerotia have been used as a diuretic agent in China for over two thousand years. A shortage of the natural P. umbellatus has prompted researchers to induce sclerotial formation in the laboratory. METHODOLOGY/PRINCIPAL FINDING: P. umbellatus cultivation in a sawdust...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577777/ https://www.ncbi.nlm.nih.gov/pubmed/23437090 http://dx.doi.org/10.1371/journal.pone.0056190 |
_version_ | 1782259969791361024 |
---|---|
author | Xing, Yong-Mei Zhang, Li-Chun Liang, Han-Qiao Lv, Jing Song, Chao Guo, Shun-Xing Wang, Chun-Lan Lee, Tae-Soo Lee, Min-Woong |
author_facet | Xing, Yong-Mei Zhang, Li-Chun Liang, Han-Qiao Lv, Jing Song, Chao Guo, Shun-Xing Wang, Chun-Lan Lee, Tae-Soo Lee, Min-Woong |
author_sort | Xing, Yong-Mei |
collection | PubMed |
description | BACKGROUND: Polyporus umbellatus sclerotia have been used as a diuretic agent in China for over two thousand years. A shortage of the natural P. umbellatus has prompted researchers to induce sclerotial formation in the laboratory. METHODOLOGY/PRINCIPAL FINDING: P. umbellatus cultivation in a sawdust-based substrate was investigated to evaluate the effect of low temperature conditions on sclerotial formation. A phenol-sulfuric acid method was employed to determine the polysaccharide content of wild P. umbellatus sclerotia and mycelia and sclerotia grown in low-temperature treatments. In addition, reactive oxygen species (ROS) content, expressed as the fluorescence intensity of mycelia during sclerotial differentiation was determined. Analysis of ROS generation and sclerotial formation in mycelia after treatment with the antioxidants such as diphenyleneiodonium chloride (DPI), apocynin (Apo), or vitamin C were studied. Furthermore, macroscopic and microscopic characteristics of sclerotial differentiation were observed. Sclerotia were not induced by continuous cultivation at 25°C. The polysaccharide content of the artificial sclerotia is 78% of that of wild sclerotia. In the low-temperature treatment group, the fluorescent intensity of ROS was higher than that of the room temperature (25°C) group which did not induce sclerotial formation all through the cultivation. The antioxidants DPI and Apo reduced ROS levels and did not induce sclerotial formation. Although the concentration-dependent effects of vitamin C (5–15 mg mL(−1)) also reduced ROS generation and inhibited sclerotial formation, using a low concentration of vitamin C (1 mg mL(−1)) successfully induced sclerotial differentiation and increased ROS production. CONCLUSIONS/SIGNIFICANCE: Exposure to low temperatures induced P. umbellatus sclerotial morphogenesis during cultivation. Low temperature treatment enhanced ROS in mycelia, which may be important in triggering sclerotial differentiation in P. umbellatus. Moreover, the application of antioxidants impaired ROS generation and inhibited sclerotial formation. Our findings may help to provide new insights into the biological mechanisms underlying sclerotial morphogenesis in P. umbellatus. |
format | Online Article Text |
id | pubmed-3577777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35777772013-02-22 Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions Xing, Yong-Mei Zhang, Li-Chun Liang, Han-Qiao Lv, Jing Song, Chao Guo, Shun-Xing Wang, Chun-Lan Lee, Tae-Soo Lee, Min-Woong PLoS One Research Article BACKGROUND: Polyporus umbellatus sclerotia have been used as a diuretic agent in China for over two thousand years. A shortage of the natural P. umbellatus has prompted researchers to induce sclerotial formation in the laboratory. METHODOLOGY/PRINCIPAL FINDING: P. umbellatus cultivation in a sawdust-based substrate was investigated to evaluate the effect of low temperature conditions on sclerotial formation. A phenol-sulfuric acid method was employed to determine the polysaccharide content of wild P. umbellatus sclerotia and mycelia and sclerotia grown in low-temperature treatments. In addition, reactive oxygen species (ROS) content, expressed as the fluorescence intensity of mycelia during sclerotial differentiation was determined. Analysis of ROS generation and sclerotial formation in mycelia after treatment with the antioxidants such as diphenyleneiodonium chloride (DPI), apocynin (Apo), or vitamin C were studied. Furthermore, macroscopic and microscopic characteristics of sclerotial differentiation were observed. Sclerotia were not induced by continuous cultivation at 25°C. The polysaccharide content of the artificial sclerotia is 78% of that of wild sclerotia. In the low-temperature treatment group, the fluorescent intensity of ROS was higher than that of the room temperature (25°C) group which did not induce sclerotial formation all through the cultivation. The antioxidants DPI and Apo reduced ROS levels and did not induce sclerotial formation. Although the concentration-dependent effects of vitamin C (5–15 mg mL(−1)) also reduced ROS generation and inhibited sclerotial formation, using a low concentration of vitamin C (1 mg mL(−1)) successfully induced sclerotial differentiation and increased ROS production. CONCLUSIONS/SIGNIFICANCE: Exposure to low temperatures induced P. umbellatus sclerotial morphogenesis during cultivation. Low temperature treatment enhanced ROS in mycelia, which may be important in triggering sclerotial differentiation in P. umbellatus. Moreover, the application of antioxidants impaired ROS generation and inhibited sclerotial formation. Our findings may help to provide new insights into the biological mechanisms underlying sclerotial morphogenesis in P. umbellatus. Public Library of Science 2013-02-20 /pmc/articles/PMC3577777/ /pubmed/23437090 http://dx.doi.org/10.1371/journal.pone.0056190 Text en © 2013 Xing et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Xing, Yong-Mei Zhang, Li-Chun Liang, Han-Qiao Lv, Jing Song, Chao Guo, Shun-Xing Wang, Chun-Lan Lee, Tae-Soo Lee, Min-Woong Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions |
title | Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions |
title_full | Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions |
title_fullStr | Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions |
title_full_unstemmed | Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions |
title_short | Sclerotial Formation of Polyporus umbellatus by Low Temperature Treatment under Artificial Conditions |
title_sort | sclerotial formation of polyporus umbellatus by low temperature treatment under artificial conditions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577777/ https://www.ncbi.nlm.nih.gov/pubmed/23437090 http://dx.doi.org/10.1371/journal.pone.0056190 |
work_keys_str_mv | AT xingyongmei sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT zhanglichun sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT lianghanqiao sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT lvjing sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT songchao sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT guoshunxing sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT wangchunlan sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT leetaesoo sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions AT leeminwoong sclerotialformationofpolyporusumbellatusbylowtemperaturetreatmentunderartificialconditions |