Cargando…
Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre
Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himala...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577782/ https://www.ncbi.nlm.nih.gov/pubmed/23437322 http://dx.doi.org/10.1371/journal.pone.0057103 |
Sumario: | Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species’ response to climate change from this region are lacking. Here we use historical (1849–50) and the recent (2007–2010) data on temperature and endemic species’ elevational ranges to perform a correlative study in the two alpine valleys of Sikkim. We show that the ongoing warming in the alpine Sikkim Himalaya has transformed the plant assemblages. This study lends support to the hypothesis that changing climate is causing species distribution changes. We provide first evidence of warmer winters in the region compared to the last two centuries, with mean temperatures of the warmest and the coldest months may have increased by 0.76±0.25°C and 3.65±2°C, respectively. Warming-driven geographical range shifts were recorded in 87% of 124 endemic plant species studied in the region; upper range extensions of species have resulted in increased species richness in the upper alpine zone, compared to the 19(th) century. We recorded a shift of 23–998 m in species’ upper elevation limit and a mean upward displacement rate of 27.53±22.04 m/decade in the present study. We infer that the present-day plant assemblages and community structure in the Himalaya is substantially different from the last century and is, therefore, in a state of flux under the impact of warming. The continued trend of warming is likely to result in ongoing elevational range contractions and eventually, species extinctions, particularly at mountaintops. |
---|