Cargando…
Optimal Properties of Analog Perceptrons with Excitatory Weights
The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF) to Purkinje Cell (PC) synapses is guided by the Climbing fibers (CF), which encode an ‘error signal’. Purkinje cells have thus been modeled...
Autores principales: | Clopath, Claudia, Brunel, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578758/ https://www.ncbi.nlm.nih.gov/pubmed/23436991 http://dx.doi.org/10.1371/journal.pcbi.1002919 |
Ejemplares similares
-
Implementation of Analog Perceptron as an Essential Element of Configurable Neural Networks
por: Geng, Chao, et al.
Publicado: (2020) -
Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity
por: Gallinaro, Júlia V., et al.
Publicado: (2021) -
An Analog Multilayer Perceptron Neural Network for a Portable Electronic Nose
por: Pan, Chih-Heng, et al.
Publicado: (2012) -
GGA-MLP: A Greedy Genetic Algorithm to Optimize Weights and Biases in Multilayer Perceptron
por: Bansal, Priti, et al.
Publicado: (2022) -
Excitatory to inhibitory connectivity shaped by synaptic and homeostatic plasticity
por: Clopath, Claudia, et al.
Publicado: (2015)