Cargando…
Isolation and characterization of the plant immune-priming compounds Imprimatin B3 and -B4, potentiators of disease resistance in Arabidopsis thaliana
Plant activators are chemical crop protectants that fortify the immune system in plants. Unlike pesticides that target pathogens, plant activators provide durable effects against a broad spectrum of diseases, which have not been overcome by pathogenic microbes. Plant activators are not only useful a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578884/ https://www.ncbi.nlm.nih.gov/pubmed/23073018 http://dx.doi.org/10.4161/psb.22138 |
Sumario: | Plant activators are chemical crop protectants that fortify the immune system in plants. Unlike pesticides that target pathogens, plant activators provide durable effects against a broad spectrum of diseases, which have not been overcome by pathogenic microbes. Plant activators are not only useful agrochemicals, but can also help to elucidate the details of the plant immune system. Using an established high-throughput screening procedure, we previously identified 5 compounds, designated as Imprimatins, which prime plant immune response. These compounds increased disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants by inhibiting 2 salicylic acid (SA) glucosyltransferases (SAGTs), resulting in accumulation of the phytohormone SA. Here, we report the isolation of 2 additional Imprimatins, B3 and B4, which are structurally similar to Imprimatin B1 and B2. Because these compounds did not have strong inhibitory effects on SAGTs in vitro, they may exert their function after metabolic conversion in vivo. |
---|