Cargando…

Multifunctionality of the LEC1 transcription factor during plant development

LEC1 acts as a key regulator of embryogenesis in Arabidopsis thaliana, but is involved in a wide range of functions, all the way from embryo morphogenesis to seed maturation. New data show that LEC1, partially in conjunction with abscisic acid, affects auxin synthesis, and both brassinosteroid and l...

Descripción completa

Detalles Bibliográficos
Autores principales: Junker, Astrid, Bäumlein, Helmut
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578918/
https://www.ncbi.nlm.nih.gov/pubmed/23073004
http://dx.doi.org/10.4161/psb.22365
Descripción
Sumario:LEC1 acts as a key regulator of embryogenesis in Arabidopsis thaliana, but is involved in a wide range of functions, all the way from embryo morphogenesis to seed maturation. New data show that LEC1, partially in conjunction with abscisic acid, affects auxin synthesis, and both brassinosteroid and light signaling. The phenotype of LEC1 overexpressors confirms LEC1's known participation in the regulation of somatic embryogenesis, but also indicates additional roles in embryonic and extra-embryonic cell elongation. Here we present an integrated model of LEC1 function and suggest potential directions to be taken in future research in this important area of plant science.