Cargando…

Deletion of 12/15-Lipoxygenase Alters Macrophage and Islet Function in NOD-Alox15(null) Mice, Leading to Protection against Type 1 Diabetes Development

AIMS: Type 1 diabetes (T1D) is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene) in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothe...

Descripción completa

Detalles Bibliográficos
Autores principales: Green-Mitchell, Shamina M., Tersey, Sarah A., Cole, Banumathi K., Ma, Kaiwen, Kuhn, Norine S., Cunningham, Tina Duong, Maybee, Nelly A., Chakrabarti, Swarup K., McDuffie, Marcia, Taylor-Fishwick, David A., Mirmira, Raghavendra G., Nadler, Jerry L., Morris, Margaret A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578926/
https://www.ncbi.nlm.nih.gov/pubmed/23437231
http://dx.doi.org/10.1371/journal.pone.0056763
Descripción
Sumario:AIMS: Type 1 diabetes (T1D) is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene) in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothesis that cytokines involved in the IL-12/12/15-LO axis affect both macrophage and islet function, which contributes to the development of T1D. METHODS: 12/15-LO expression was clarified in immune cells by qRT-PCR, and timing of expression was tested in islets using qRT-PCR and Western blotting. Expression of key proinflammatory cytokines and pancreatic transcription factors was studied in NOD and NOD-Alox15(null) macrophages and islets using qRT-PCR. The two mouse strains were also assessed for the ability of splenocytes to transfer diabetes in an adoptive transfer model, and beta cell mass. RESULTS: 12/15-LO is expressed in macrophages, but not B and T cells of NOD mice. In macrophages, 12/15-LO deletion leads to decreased proinflammatory cytokine mRNA and protein levels. Furthermore, splenocytes from NOD-Alox15(null) mice are unable to transfer diabetes in an adoptive transfer model. In islets, expression of 12/15-LO in NOD mice peaks at a crucial time during insulitis development. The absence of 12/15-LO results in maintenance of islet health with respect to measurements of islet-specific transcription factors, markers of islet health, proinflammatory cytokines, and beta cell mass. CONCLUSIONS: These results suggest that 12/15-LO affects islet and macrophage function, causing inflammation, and leading to autoimmunity and reduced beta cell mass.