Cargando…
Chemoenzymatic Asymmetric Synthesis of Pregabalin Precursors via Asymmetric Bioreduction of β-Cyanoacrylate Esters Using Ene-Reductases
[Image: see text] The asymmetric bioreduction of a library of β-cyanoacrylate esters using ene-reductases was studied with the aim to provide a biocatalytic route to precursors for GABA analogues, such as pregabalin. The stereochemical outcome could be controlled by substrate-engineering through siz...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2013
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579311/ https://www.ncbi.nlm.nih.gov/pubmed/23316696 http://dx.doi.org/10.1021/jo302484p |
Sumario: | [Image: see text] The asymmetric bioreduction of a library of β-cyanoacrylate esters using ene-reductases was studied with the aim to provide a biocatalytic route to precursors for GABA analogues, such as pregabalin. The stereochemical outcome could be controlled by substrate-engineering through size-variation of the ester moiety and by employing stereochemically pure (E)- or (Z)-isomers, which allowed to access both enantiomers of each product in up to quantitative conversion in enantiomerically pure form. In addition, stereoselectivities and conversions could be improved by mutant variants of OPR1, and the utility of the system was demonstrated by preparative-scale applications. |
---|