Cargando…

A network module-based method for identifying cancer prognostic signatures

Discovering robust prognostic gene signatures as biomarkers using genomics data can be challenging. We have developed a simple but efficient method for discovering prognostic biomarkers in cancer gene expression data sets using modules derived from a highly reliable gene functional interaction netwo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Guanming, Stein, Lincoln
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580410/
https://www.ncbi.nlm.nih.gov/pubmed/23228031
http://dx.doi.org/10.1186/gb-2012-13-12-r112
Descripción
Sumario:Discovering robust prognostic gene signatures as biomarkers using genomics data can be challenging. We have developed a simple but efficient method for discovering prognostic biomarkers in cancer gene expression data sets using modules derived from a highly reliable gene functional interaction network. When applied to breast cancer, we discover a novel 31-gene signature associated with patient survival. The signature replicates across 5 independent gene expression studies, and outperforms 48 published gene signatures. When applied to ovarian cancer, the algorithm identifies a 75-gene signature associated with patient survival. A Cytoscape plugin implementation of the signature discovery method is available at http://wiki.reactome.org/index.php/Reactome_FI_Cytoscape_Plugin