Cargando…
An imprinted IMAGe: insights into growth regulation through genomic analysis of a rare disease
Missense mutations in the imprinted gene that encodes cyclin-dependent kinase inhibitor 1C (CDKN1C, also called p57Kip2) result in a rare disorder associated with prenatal growth retardation (IMAGe syndrome). Loss-of-function mutations in CDKN1C have been previously described in the congenital overg...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580416/ https://www.ncbi.nlm.nih.gov/pubmed/22839767 http://dx.doi.org/10.1186/gm361 |
Sumario: | Missense mutations in the imprinted gene that encodes cyclin-dependent kinase inhibitor 1C (CDKN1C, also called p57Kip2) result in a rare disorder associated with prenatal growth retardation (IMAGe syndrome). Loss-of-function mutations in CDKN1C have been previously described in the congenital overgrowth syndrome Beckwith-Wiedemann syndrome and some cancers. In contrast, a recent study by Arboleda et al. proposes that the CDKN1C mutations associated with IMAGe syndrome have a gain-of-function effect. These findings highlight how rare genetic disorders can provide important insights into the regulation of critical processes such as regulation of cell growth. |
---|