Cargando…

Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling

BACKGROUND: Cells are subjected to dramatic changes of gene expression upon environmental changes. Stress causes a general down-regulation of gene expression together with the induction of a set of stress-responsive genes. The p38-related stress-activated protein kinase Hog1 is an important regulato...

Descripción completa

Detalles Bibliográficos
Autores principales: Nadal-Ribelles, Mariona, Conde, Núria, Flores, Oscar, González-Vallinas, Juan, Eyras, Eduardo, Orozco, Modesto, de Nadal, Eulàlia, Posas, Francesc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580498/
https://www.ncbi.nlm.nih.gov/pubmed/23158682
http://dx.doi.org/10.1186/gb-2012-13-11-r106
Descripción
Sumario:BACKGROUND: Cells are subjected to dramatic changes of gene expression upon environmental changes. Stress causes a general down-regulation of gene expression together with the induction of a set of stress-responsive genes. The p38-related stress-activated protein kinase Hog1 is an important regulator of transcription upon osmostress in yeast. RESULTS: Genome-wide localization studies of RNA polymerase II (RNA Pol II) and Hog1 showed that stress induced major changes in RNA Pol II localization, with a shift toward stress-responsive genes relative to housekeeping genes. RNA Pol II relocalization required Hog1, which was also localized to stress-responsive loci. In addition to RNA Pol II-bound genes, Hog1 also localized to RNA polymerase III-bound genes, pointing to a wider role for Hog1 in transcriptional control than initially expected. Interestingly, an increasing association of Hog1 with stress-responsive genes was strongly correlated with chromatin remodeling and increased gene expression. Remarkably, MNase-Seq analysis showed that although chromatin structure was not significantly altered at a genome-wide level in response to stress, there was pronounced chromatin remodeling for those genes that displayed Hog1 association. CONCLUSION: Hog1 serves to bypass the general down-regulation of gene expression that occurs in response to osmostress, and does so both by targeting RNA Pol II machinery and by inducing chromatin remodeling at stress-responsive loci.