Cargando…

Glucocorticoid-Induced Osteoporosis in Children with 21-Hydroxylase Deficiency

21-Hydroxylase deficiency (21-OHD) is the most common cause of congenital adrenal hyperplasia (CAH), resulting from deletions or mutations of the P450 21-hydroxylase gene (CYP21A2). Children with 21-OHD need chronic glucocorticoid (cGC) therapy, both to replace congenital deficit in cortisol synthes...

Descripción completa

Detalles Bibliográficos
Autores principales: Ventura, Annamaria, Brunetti, Giacomina, Colucci, Silvia, Oranger, Angela, Ladisa, Filomena, Cavallo, Luciano, Grano, Maria, Faienza, Maria Felicia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581245/
https://www.ncbi.nlm.nih.gov/pubmed/23484098
http://dx.doi.org/10.1155/2013/250462
Descripción
Sumario:21-Hydroxylase deficiency (21-OHD) is the most common cause of congenital adrenal hyperplasia (CAH), resulting from deletions or mutations of the P450 21-hydroxylase gene (CYP21A2). Children with 21-OHD need chronic glucocorticoid (cGC) therapy, both to replace congenital deficit in cortisol synthesis and to reduce androgen secretion by adrenal cortex. GC-induced osteoporosis (GIO) is the most common form of secondary osteoporosis that results in an early, transient increase in bone resorption accompanied by a decrease in bone formation, maintained for the duration of GC therapy. Despite the conflicting results in the literature about the bone status on GC-treated patients with 21-OHD, many reports consider these subjects to be at risk for osteoporosis and fractures. In bone cells, at the molecular level, GCs regulate various functions including osteoblastogenesis, osteoclastogenesis, and the apoptosis of osteoblasts and osteocytes. In this paper, we focus on the physiology and biosynthesis of endogenous steroid hormones as well as on the effects of GCs on bone cells, highlighting the pathogenetic mechanism of GIO in children with 21-OHD.