Cargando…
Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential
Müller cells are mainly involved in controlling extracellular homeostasis in the retina, where intense neural activity alters ion concentrations and osmotic gradients, thus favoring cell swelling. This increase in cell volume is followed by a regulatory volume decrease response (RVD), which is known...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581454/ https://www.ncbi.nlm.nih.gov/pubmed/23451196 http://dx.doi.org/10.1371/journal.pone.0057268 |
_version_ | 1782260412033531904 |
---|---|
author | Fernández, Juan M. Di Giusto, Gisela Kalstein, Maia Melamud, Luciana Rivarola, Valeria Ford, Paula Capurro, Claudia |
author_facet | Fernández, Juan M. Di Giusto, Gisela Kalstein, Maia Melamud, Luciana Rivarola, Valeria Ford, Paula Capurro, Claudia |
author_sort | Fernández, Juan M. |
collection | PubMed |
description | Müller cells are mainly involved in controlling extracellular homeostasis in the retina, where intense neural activity alters ion concentrations and osmotic gradients, thus favoring cell swelling. This increase in cell volume is followed by a regulatory volume decrease response (RVD), which is known to be partially mediated by the activation of K(+) and anion channels. However, the precise mechanisms underlying osmotic swelling and subsequent cell volume regulation in Müller cells have been evaluated by only a few studies. Although the activation of ion channels during the RVD response may alter transmembrane potential (V(m)), no studies have actually addressed this issue in Müller cells. The aim of the present work is to evaluate RVD using a retinal Müller cell line (MIO-M1) under different extracellular ionic conditions, and to study a possible association between RVD and changes in V(m). Cell volume and V(m) changes were evaluated using fluorescent probe techniques and a mathematical model. Results show that cell swelling and subsequent RVD were accompanied by V(m) depolarization followed by repolarization. This response depended on the composition of extracellular media. Cells exposed to a hypoosmotic solution with reduced ionic strength underwent maximum RVD and had a larger repolarization. Both of these responses were reduced by K(+) or Cl(−) channel blockers. In contrast, cells facing a hypoosmotic solution with the same ionic strength as the isoosmotic solution showed a lower RVD and a smaller repolarization and were not affected by blockers. Together, experimental and simulated data led us to propose that the efficiency of the RVD process in Müller glia depends not only on the activation of ion channels, but is also strongly modulated by concurrent changes in the membrane potential. The relationship between ionic fluxes, changes in ion permeabilities and ion concentrations –all leading to changes in V(m)– define the success of RVD. |
format | Online Article Text |
id | pubmed-3581454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35814542013-02-28 Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential Fernández, Juan M. Di Giusto, Gisela Kalstein, Maia Melamud, Luciana Rivarola, Valeria Ford, Paula Capurro, Claudia PLoS One Research Article Müller cells are mainly involved in controlling extracellular homeostasis in the retina, where intense neural activity alters ion concentrations and osmotic gradients, thus favoring cell swelling. This increase in cell volume is followed by a regulatory volume decrease response (RVD), which is known to be partially mediated by the activation of K(+) and anion channels. However, the precise mechanisms underlying osmotic swelling and subsequent cell volume regulation in Müller cells have been evaluated by only a few studies. Although the activation of ion channels during the RVD response may alter transmembrane potential (V(m)), no studies have actually addressed this issue in Müller cells. The aim of the present work is to evaluate RVD using a retinal Müller cell line (MIO-M1) under different extracellular ionic conditions, and to study a possible association between RVD and changes in V(m). Cell volume and V(m) changes were evaluated using fluorescent probe techniques and a mathematical model. Results show that cell swelling and subsequent RVD were accompanied by V(m) depolarization followed by repolarization. This response depended on the composition of extracellular media. Cells exposed to a hypoosmotic solution with reduced ionic strength underwent maximum RVD and had a larger repolarization. Both of these responses were reduced by K(+) or Cl(−) channel blockers. In contrast, cells facing a hypoosmotic solution with the same ionic strength as the isoosmotic solution showed a lower RVD and a smaller repolarization and were not affected by blockers. Together, experimental and simulated data led us to propose that the efficiency of the RVD process in Müller glia depends not only on the activation of ion channels, but is also strongly modulated by concurrent changes in the membrane potential. The relationship between ionic fluxes, changes in ion permeabilities and ion concentrations –all leading to changes in V(m)– define the success of RVD. Public Library of Science 2013-02-25 /pmc/articles/PMC3581454/ /pubmed/23451196 http://dx.doi.org/10.1371/journal.pone.0057268 Text en © 2013 Fernández et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Fernández, Juan M. Di Giusto, Gisela Kalstein, Maia Melamud, Luciana Rivarola, Valeria Ford, Paula Capurro, Claudia Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential |
title | Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential |
title_full | Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential |
title_fullStr | Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential |
title_full_unstemmed | Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential |
title_short | Cell Volume Regulation in Cultured Human Retinal Müller Cells Is Associated with Changes in Transmembrane Potential |
title_sort | cell volume regulation in cultured human retinal müller cells is associated with changes in transmembrane potential |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581454/ https://www.ncbi.nlm.nih.gov/pubmed/23451196 http://dx.doi.org/10.1371/journal.pone.0057268 |
work_keys_str_mv | AT fernandezjuanm cellvolumeregulationinculturedhumanretinalmullercellsisassociatedwithchangesintransmembranepotential AT digiustogisela cellvolumeregulationinculturedhumanretinalmullercellsisassociatedwithchangesintransmembranepotential AT kalsteinmaia cellvolumeregulationinculturedhumanretinalmullercellsisassociatedwithchangesintransmembranepotential AT melamudluciana cellvolumeregulationinculturedhumanretinalmullercellsisassociatedwithchangesintransmembranepotential AT rivarolavaleria cellvolumeregulationinculturedhumanretinalmullercellsisassociatedwithchangesintransmembranepotential AT fordpaula cellvolumeregulationinculturedhumanretinalmullercellsisassociatedwithchangesintransmembranepotential AT capurroclaudia cellvolumeregulationinculturedhumanretinalmullercellsisassociatedwithchangesintransmembranepotential |