Cargando…
Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics
Ca(2+)-activated basal adenylate cyclase (AC) in rabbit sinoatrial node cells (SANC) guarantees, via basal cAMP/PKA-calmodulin/CaMKII-dependent protein phosphorylation, the occurrence of rhythmic, sarcoplasmic-reticulum generated, sub-membrane Ca(2+) releases that prompt rhythmic, spontaneous action...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581576/ https://www.ncbi.nlm.nih.gov/pubmed/23459256 http://dx.doi.org/10.1371/journal.pone.0057079 |
_version_ | 1782260442574356480 |
---|---|
author | Yaniv, Yael Spurgeon, Harold A. Ziman, Bruce D. Lakatta, Edward G. |
author_facet | Yaniv, Yael Spurgeon, Harold A. Ziman, Bruce D. Lakatta, Edward G. |
author_sort | Yaniv, Yael |
collection | PubMed |
description | Ca(2+)-activated basal adenylate cyclase (AC) in rabbit sinoatrial node cells (SANC) guarantees, via basal cAMP/PKA-calmodulin/CaMKII-dependent protein phosphorylation, the occurrence of rhythmic, sarcoplasmic-reticulum generated, sub-membrane Ca(2+) releases that prompt rhythmic, spontaneous action potentials (APs). This high-throughput signaling consumes ATP. AIMS: We have previously demonstrated that basal AC-cAMP/PKA signaling directly, and Ca(2+) indirectly, regulate mitochondrial ATP production. While, clearly, Ca(2+)-calmodulin-CaMKII activity regulates ATP consumption, whether it has a role in the control of ATP production is unknown. METHODS AND RESULTS: We superfused single, isolated rabbit SANC at 37°C with physiological saline containing CaMKII inhibitors, (KN-93 or autocamtide-2 Related Inhibitory Peptide (AIP)), or a calmodulin inhibitor (W-7) and measured cytosolic Ca(2+), flavoprotein fluorescence and spontaneous AP firing rate. We measured cAMP, ATP and O(2) consumption in cell suspensions. Graded reductions in basal CaMKII activity by KN-93 (0.5–3 µmol/L) or AIP (2–10 µmol/L) markedly slow the kinetics of intracellular Ca(2+) cycling, decrease the spontaneous AP firing rate, decrease cAMP, and reduce O(2) consumption and flavoprotein fluorescence. In this context of graded reductions in ATP demand, however, ATP also becomes depleted, indicating reduced ATP production. CONCLUSIONS: CaMKII signaling, a crucial element of normal automaticity in rabbit SANC, is also involved in SANC bioenergetics. |
format | Online Article Text |
id | pubmed-3581576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35815762013-02-28 Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics Yaniv, Yael Spurgeon, Harold A. Ziman, Bruce D. Lakatta, Edward G. PLoS One Research Article Ca(2+)-activated basal adenylate cyclase (AC) in rabbit sinoatrial node cells (SANC) guarantees, via basal cAMP/PKA-calmodulin/CaMKII-dependent protein phosphorylation, the occurrence of rhythmic, sarcoplasmic-reticulum generated, sub-membrane Ca(2+) releases that prompt rhythmic, spontaneous action potentials (APs). This high-throughput signaling consumes ATP. AIMS: We have previously demonstrated that basal AC-cAMP/PKA signaling directly, and Ca(2+) indirectly, regulate mitochondrial ATP production. While, clearly, Ca(2+)-calmodulin-CaMKII activity regulates ATP consumption, whether it has a role in the control of ATP production is unknown. METHODS AND RESULTS: We superfused single, isolated rabbit SANC at 37°C with physiological saline containing CaMKII inhibitors, (KN-93 or autocamtide-2 Related Inhibitory Peptide (AIP)), or a calmodulin inhibitor (W-7) and measured cytosolic Ca(2+), flavoprotein fluorescence and spontaneous AP firing rate. We measured cAMP, ATP and O(2) consumption in cell suspensions. Graded reductions in basal CaMKII activity by KN-93 (0.5–3 µmol/L) or AIP (2–10 µmol/L) markedly slow the kinetics of intracellular Ca(2+) cycling, decrease the spontaneous AP firing rate, decrease cAMP, and reduce O(2) consumption and flavoprotein fluorescence. In this context of graded reductions in ATP demand, however, ATP also becomes depleted, indicating reduced ATP production. CONCLUSIONS: CaMKII signaling, a crucial element of normal automaticity in rabbit SANC, is also involved in SANC bioenergetics. Public Library of Science 2013-02-25 /pmc/articles/PMC3581576/ /pubmed/23459256 http://dx.doi.org/10.1371/journal.pone.0057079 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Yaniv, Yael Spurgeon, Harold A. Ziman, Bruce D. Lakatta, Edward G. Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics |
title | Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics |
title_full | Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics |
title_fullStr | Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics |
title_full_unstemmed | Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics |
title_short | Ca(2+)/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity and Sinoatrial Nodal Pacemaker Cell Energetics |
title_sort | ca(2+)/calmodulin-dependent protein kinase ii (camkii) activity and sinoatrial nodal pacemaker cell energetics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581576/ https://www.ncbi.nlm.nih.gov/pubmed/23459256 http://dx.doi.org/10.1371/journal.pone.0057079 |
work_keys_str_mv | AT yanivyael ca2calmodulindependentproteinkinaseiicamkiiactivityandsinoatrialnodalpacemakercellenergetics AT spurgeonharolda ca2calmodulindependentproteinkinaseiicamkiiactivityandsinoatrialnodalpacemakercellenergetics AT zimanbruced ca2calmodulindependentproteinkinaseiicamkiiactivityandsinoatrialnodalpacemakercellenergetics AT lakattaedwardg ca2calmodulindependentproteinkinaseiicamkiiactivityandsinoatrialnodalpacemakercellenergetics |