Cargando…
miR-153 Regulates SNAP-25, Synaptic Transmission, and Neuronal Development
SNAP-25 is a core component of the trimeric SNARE complex mediating vesicle exocytosis during membrane addition for neuronal growth, neuropeptide/growth factor secretion, and neurotransmitter release during synaptic transmission. Here, we report a novel microRNA mechanism of SNAP-25 regulation contr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581580/ https://www.ncbi.nlm.nih.gov/pubmed/23451149 http://dx.doi.org/10.1371/journal.pone.0057080 |
Sumario: | SNAP-25 is a core component of the trimeric SNARE complex mediating vesicle exocytosis during membrane addition for neuronal growth, neuropeptide/growth factor secretion, and neurotransmitter release during synaptic transmission. Here, we report a novel microRNA mechanism of SNAP-25 regulation controlling motor neuron development, neurosecretion, synaptic activity, and movement in zebrafish. Loss of miR-153 causes overexpression of SNAP-25 and consequent hyperactive movement in early zebrafish embryos. Conversely, overexpression of miR-153 causes SNAP-25 down regulation resulting in near complete paralysis, mimicking the effects of treatment with Botulinum neurotoxin. miR-153-dependent changes in synaptic activity at the neuromuscular junction are consistent with the observed movement defects. Underlying the movement defects, perturbation of miR-153 function causes dramatic developmental changes in motor neuron patterning and branching. Together, our results indicate that precise control of SNAP-25 expression by miR-153 is critically important for proper neuronal patterning as well as neurotransmission. |
---|