Cargando…

Defect Induced Electronic Structure of Uranofullerene

The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U(2)@C(60) to predict the associated stru...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Xing, Cheng, Cheng, Zhang, Wei, Xin, Minsi, Huai, Ping, Zhang, Ruiqin, Wang, Zhigang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581830/
https://www.ncbi.nlm.nih.gov/pubmed/23439318
http://dx.doi.org/10.1038/srep01341
Descripción
Sumario:The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U(2)@C(60) to predict the associated structure and electronic properties of U(2)@C(61) based on the density functional theory method. We found that defect induces obvious changes in the electronic structure of this metallofullerene. More interestingly, the ground state of U(2)@C(61) is nonet spin in contrast to the septet of U(2)@C(60). Electronic structure analysis shows that the inner U atoms and the C ad-atom on the surface of the cage contribute together to this spin state, which is brought about by a ferromagnetic coupling between the spin of the unpaired electrons of the U atoms and the C ad-atom. This discovery may provide a possible approach to adapt the electronic structure properties of endohedral metallofullerenes.