Cargando…

SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology

Summary: Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists...

Descripción completa

Detalles Bibliográficos
Autores principales: Adams, Richard, Clark, Allan, Yamaguchi, Azusa, Hanlon, Neil, Tsorman, Nikos, Ali, Shakir, Lebedeva, Galina, Goltsov, Alexey, Sorokin, Anatoly, Akman, Ozgur E., Troein, Carl, Millar, Andrew J., Goryanin, Igor, Gilmore, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582266/
https://www.ncbi.nlm.nih.gov/pubmed/23329415
http://dx.doi.org/10.1093/bioinformatics/btt023
_version_ 1782260550993969152
author Adams, Richard
Clark, Allan
Yamaguchi, Azusa
Hanlon, Neil
Tsorman, Nikos
Ali, Shakir
Lebedeva, Galina
Goltsov, Alexey
Sorokin, Anatoly
Akman, Ozgur E.
Troein, Carl
Millar, Andrew J.
Goryanin, Igor
Gilmore, Stephen
author_facet Adams, Richard
Clark, Allan
Yamaguchi, Azusa
Hanlon, Neil
Tsorman, Nikos
Ali, Shakir
Lebedeva, Galina
Goltsov, Alexey
Sorokin, Anatoly
Akman, Ozgur E.
Troein, Carl
Millar, Andrew J.
Goryanin, Igor
Gilmore, Stephen
author_sort Adams, Richard
collection PubMed
description Summary: Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI’s use of standard data formats. Availability and implementation: All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials. Contact: stg@inf.ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-3582266
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-35822662013-02-26 SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology Adams, Richard Clark, Allan Yamaguchi, Azusa Hanlon, Neil Tsorman, Nikos Ali, Shakir Lebedeva, Galina Goltsov, Alexey Sorokin, Anatoly Akman, Ozgur E. Troein, Carl Millar, Andrew J. Goryanin, Igor Gilmore, Stephen Bioinformatics Applications Notes Summary: Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI’s use of standard data formats. Availability and implementation: All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials. Contact: stg@inf.ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2013-03-01 2013-01-17 /pmc/articles/PMC3582266/ /pubmed/23329415 http://dx.doi.org/10.1093/bioinformatics/btt023 Text en © The Author 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Notes
Adams, Richard
Clark, Allan
Yamaguchi, Azusa
Hanlon, Neil
Tsorman, Nikos
Ali, Shakir
Lebedeva, Galina
Goltsov, Alexey
Sorokin, Anatoly
Akman, Ozgur E.
Troein, Carl
Millar, Andrew J.
Goryanin, Igor
Gilmore, Stephen
SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology
title SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology
title_full SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology
title_fullStr SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology
title_full_unstemmed SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology
title_short SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology
title_sort sbsi: an extensible distributed software infrastructure for parameter estimation in systems biology
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582266/
https://www.ncbi.nlm.nih.gov/pubmed/23329415
http://dx.doi.org/10.1093/bioinformatics/btt023
work_keys_str_mv AT adamsrichard sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT clarkallan sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT yamaguchiazusa sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT hanlonneil sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT tsormannikos sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT alishakir sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT lebedevagalina sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT goltsovalexey sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT sorokinanatoly sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT akmanozgure sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT troeincarl sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT millarandrewj sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT goryaninigor sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology
AT gilmorestephen sbsianextensibledistributedsoftwareinfrastructureforparameterestimationinsystemsbiology