Cargando…

iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data

BACKGROUND: Long intergenic non-coding RNAs (lincRNAs) are emerging as a novel class of non-coding RNAs and potent gene regulators. High-throughput RNA-sequencing combined with de novo assembly promises quantity discovery of novel transcripts. However, the identification of lincRNAs from thousands o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Kun, Chen, Xiaona, Jiang, Peiyong, Song, Xiaofeng, Wang, Huating, Sun, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582448/
https://www.ncbi.nlm.nih.gov/pubmed/23445546
http://dx.doi.org/10.1186/1471-2164-14-S2-S7
_version_ 1782260564753383424
author Sun, Kun
Chen, Xiaona
Jiang, Peiyong
Song, Xiaofeng
Wang, Huating
Sun, Hao
author_facet Sun, Kun
Chen, Xiaona
Jiang, Peiyong
Song, Xiaofeng
Wang, Huating
Sun, Hao
author_sort Sun, Kun
collection PubMed
description BACKGROUND: Long intergenic non-coding RNAs (lincRNAs) are emerging as a novel class of non-coding RNAs and potent gene regulators. High-throughput RNA-sequencing combined with de novo assembly promises quantity discovery of novel transcripts. However, the identification of lincRNAs from thousands of assembled transcripts is still challenging due to the difficulties of separating them from protein coding transcripts (PCTs). RESULTS: We have implemented iSeeRNA, a support vector machine (SVM)-based classifier for the identification of lincRNAs. iSeeRNA shows better performance compared to other software. A public available webserver for iSeeRNA is also provided for small size dataset. CONCLUSIONS: iSeeRNA demonstrates high prediction accuracy and runs several magnitudes faster than other similar programs. It can be integrated into the transcriptome data analysis pipelines or run as a web server, thus offering a valuable tool for lincRNA study.
format Online
Article
Text
id pubmed-3582448
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35824482013-03-05 iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data Sun, Kun Chen, Xiaona Jiang, Peiyong Song, Xiaofeng Wang, Huating Sun, Hao BMC Genomics Research BACKGROUND: Long intergenic non-coding RNAs (lincRNAs) are emerging as a novel class of non-coding RNAs and potent gene regulators. High-throughput RNA-sequencing combined with de novo assembly promises quantity discovery of novel transcripts. However, the identification of lincRNAs from thousands of assembled transcripts is still challenging due to the difficulties of separating them from protein coding transcripts (PCTs). RESULTS: We have implemented iSeeRNA, a support vector machine (SVM)-based classifier for the identification of lincRNAs. iSeeRNA shows better performance compared to other software. A public available webserver for iSeeRNA is also provided for small size dataset. CONCLUSIONS: iSeeRNA demonstrates high prediction accuracy and runs several magnitudes faster than other similar programs. It can be integrated into the transcriptome data analysis pipelines or run as a web server, thus offering a valuable tool for lincRNA study. BioMed Central 2013-02-15 /pmc/articles/PMC3582448/ /pubmed/23445546 http://dx.doi.org/10.1186/1471-2164-14-S2-S7 Text en Copyright ©2013 Sun et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Sun, Kun
Chen, Xiaona
Jiang, Peiyong
Song, Xiaofeng
Wang, Huating
Sun, Hao
iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data
title iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data
title_full iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data
title_fullStr iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data
title_full_unstemmed iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data
title_short iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data
title_sort iseerna: identification of long intergenic non-coding rna transcripts from transcriptome sequencing data
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582448/
https://www.ncbi.nlm.nih.gov/pubmed/23445546
http://dx.doi.org/10.1186/1471-2164-14-S2-S7
work_keys_str_mv AT sunkun iseernaidentificationoflongintergenicnoncodingrnatranscriptsfromtranscriptomesequencingdata
AT chenxiaona iseernaidentificationoflongintergenicnoncodingrnatranscriptsfromtranscriptomesequencingdata
AT jiangpeiyong iseernaidentificationoflongintergenicnoncodingrnatranscriptsfromtranscriptomesequencingdata
AT songxiaofeng iseernaidentificationoflongintergenicnoncodingrnatranscriptsfromtranscriptomesequencingdata
AT wanghuating iseernaidentificationoflongintergenicnoncodingrnatranscriptsfromtranscriptomesequencingdata
AT sunhao iseernaidentificationoflongintergenicnoncodingrnatranscriptsfromtranscriptomesequencingdata