Cargando…
Laws of Large Numbers and Langevin Approximations for Stochastic Neural Field Equations
In this study, we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson–Cowan equation can be obtained as the limit in uniform convergence on compacts in probability for a sequence of microscopic models when the number of neuron populations distributed i...
Autores principales: | Riedler, Martin G, Buckwar, Evelyn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582461/ https://www.ncbi.nlm.nih.gov/pubmed/23343328 http://dx.doi.org/10.1186/2190-8567-3-1 |
Ejemplares similares
-
Solving Langevin equation with the stochastic algebraically correlated noise
por: Ploszajczak, M, et al.
Publicado: (1996) -
Large Deviations for Nonlocal Stochastic Neural Fields
por: Kuehn, Christian, et al.
Publicado: (2014) -
Stochastic processes and applications: diffusion processes, the Fokker-Planck and Langevin equations
por: Pavliotis, Grigorios A
Publicado: (2014) -
Nonlinear stochastic modelling with Langevin regression
por: Callaham, J. L., et al.
Publicado: (2021) -
A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics
por: Ableidinger, Markus, et al.
Publicado: (2017)