Cargando…

The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin

Ser/thr phosphatases dephosphorylate their targets with high specificity, yet the structural and sequence determinants of phosphosite recognition are poorly understood. Calcineurin (CN) is a conserved Ca(2+)/calmodulin-dependent ser/thr phosphatase and the target of immunosuppressants, FK506 and cyc...

Descripción completa

Detalles Bibliográficos
Autores principales: Grigoriu, Simina, Bond, Rachel, Cossio, Pilar, Chen, Jennifer A., Ly, Nina, Hummer, Gerhard, Page, Rebecca, Cyert, Martha S., Peti, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582496/
https://www.ncbi.nlm.nih.gov/pubmed/23468591
http://dx.doi.org/10.1371/journal.pbio.1001492
_version_ 1782260577910915072
author Grigoriu, Simina
Bond, Rachel
Cossio, Pilar
Chen, Jennifer A.
Ly, Nina
Hummer, Gerhard
Page, Rebecca
Cyert, Martha S.
Peti, Wolfgang
author_facet Grigoriu, Simina
Bond, Rachel
Cossio, Pilar
Chen, Jennifer A.
Ly, Nina
Hummer, Gerhard
Page, Rebecca
Cyert, Martha S.
Peti, Wolfgang
author_sort Grigoriu, Simina
collection PubMed
description Ser/thr phosphatases dephosphorylate their targets with high specificity, yet the structural and sequence determinants of phosphosite recognition are poorly understood. Calcineurin (CN) is a conserved Ca(2+)/calmodulin-dependent ser/thr phosphatase and the target of immunosuppressants, FK506 and cyclosporin A (CSA). To investigate CN substrate recognition we used X-ray crystallography, biochemistry, modeling, and in vivo experiments to study A238L, a viral protein inhibitor of CN. We show that A238L competitively inhibits CN by occupying a critical substrate recognition site, while leaving the catalytic center fully accessible. Critically, the 1.7 Å structure of the A238L-CN complex reveals how CN recognizes residues in A238L that are analogous to a substrate motif, “LxVP.” The structure enabled modeling of a peptide substrate bound to CN, which predicts substrate interactions beyond the catalytic center. Finally, this study establishes that “LxVP” sequences and immunosuppressants bind to the identical site on CN. Thus, FK506, CSA, and A238L all prevent “LxVP”-mediated substrate recognition by CN, highlighting the importance of this interaction for substrate dephosphorylation. Collectively, this work presents the first integrated structural model for substrate selection and dephosphorylation by CN and lays the groundwork for structure-based development of new CN inhibitors.
format Online
Article
Text
id pubmed-3582496
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35824962013-03-06 The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin Grigoriu, Simina Bond, Rachel Cossio, Pilar Chen, Jennifer A. Ly, Nina Hummer, Gerhard Page, Rebecca Cyert, Martha S. Peti, Wolfgang PLoS Biol Research Article Ser/thr phosphatases dephosphorylate their targets with high specificity, yet the structural and sequence determinants of phosphosite recognition are poorly understood. Calcineurin (CN) is a conserved Ca(2+)/calmodulin-dependent ser/thr phosphatase and the target of immunosuppressants, FK506 and cyclosporin A (CSA). To investigate CN substrate recognition we used X-ray crystallography, biochemistry, modeling, and in vivo experiments to study A238L, a viral protein inhibitor of CN. We show that A238L competitively inhibits CN by occupying a critical substrate recognition site, while leaving the catalytic center fully accessible. Critically, the 1.7 Å structure of the A238L-CN complex reveals how CN recognizes residues in A238L that are analogous to a substrate motif, “LxVP.” The structure enabled modeling of a peptide substrate bound to CN, which predicts substrate interactions beyond the catalytic center. Finally, this study establishes that “LxVP” sequences and immunosuppressants bind to the identical site on CN. Thus, FK506, CSA, and A238L all prevent “LxVP”-mediated substrate recognition by CN, highlighting the importance of this interaction for substrate dephosphorylation. Collectively, this work presents the first integrated structural model for substrate selection and dephosphorylation by CN and lays the groundwork for structure-based development of new CN inhibitors. Public Library of Science 2013-02-26 /pmc/articles/PMC3582496/ /pubmed/23468591 http://dx.doi.org/10.1371/journal.pbio.1001492 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Grigoriu, Simina
Bond, Rachel
Cossio, Pilar
Chen, Jennifer A.
Ly, Nina
Hummer, Gerhard
Page, Rebecca
Cyert, Martha S.
Peti, Wolfgang
The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin
title The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin
title_full The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin
title_fullStr The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin
title_full_unstemmed The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin
title_short The Molecular Mechanism of Substrate Engagement and Immunosuppressant Inhibition of Calcineurin
title_sort molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582496/
https://www.ncbi.nlm.nih.gov/pubmed/23468591
http://dx.doi.org/10.1371/journal.pbio.1001492
work_keys_str_mv AT grigoriusimina themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT bondrachel themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT cossiopilar themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT chenjennifera themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT lynina themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT hummergerhard themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT pagerebecca themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT cyertmarthas themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT petiwolfgang themolecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT grigoriusimina molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT bondrachel molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT cossiopilar molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT chenjennifera molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT lynina molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT hummergerhard molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT pagerebecca molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT cyertmarthas molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin
AT petiwolfgang molecularmechanismofsubstrateengagementandimmunosuppressantinhibitionofcalcineurin