Cargando…

Improving protein coreference resolution by simple semantic classification

BACKGROUND: Current research has shown that major difficulties in event extraction for the biomedical domain are traceable to coreference. Therefore, coreference resolution is believed to be useful for improving event extraction. To address coreference resolution in molecular biology literature, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Ngan, Kim, Jin-Dong, Miwa, Makoto, Matsuzaki, Takuya, Tsujii, Junichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582588/
https://www.ncbi.nlm.nih.gov/pubmed/23157272
http://dx.doi.org/10.1186/1471-2105-13-304
Descripción
Sumario:BACKGROUND: Current research has shown that major difficulties in event extraction for the biomedical domain are traceable to coreference. Therefore, coreference resolution is believed to be useful for improving event extraction. To address coreference resolution in molecular biology literature, the Protein Coreference (COREF) task was arranged in the BioNLP Shared Task (BioNLP-ST, hereafter) 2011, as a supporting task. However, the shared task results indicated that transferring coreference resolution methods developed for other domains to the biological domain was not a straight-forward task, due to the domain differences in the coreference phenomena. RESULTS: We analyzed the contribution of domain-specific information, including the information that indicates the protein type, in a rule-based protein coreference resolution system. In particular, the domain-specific information is encoded into semantic classification modules for which the output is used in different components of the coreference resolution. We compared our system with the top four systems in the BioNLP-ST 2011; surprisingly, we found that the minimal configuration had outperformed the best system in the BioNLP-ST 2011. Analysis of the experimental results revealed that semantic classification, using protein information, has contributed to an increase in performance by 2.3% on the test data, and 4.0% on the development data, in F-score. CONCLUSIONS: The use of domain-specific information in semantic classification is important for effective coreference resolution. Since it is difficult to transfer domain-specific information across different domains, we need to continue seek for methods to utilize such information in coreference resolution.