Cargando…
mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines
BACKGROUND: Although many computational methods have been developed to predict protein subcellular localization, most of the methods are limited to the prediction of single-location proteins. Multi-location proteins are either not considered or assumed not existing. However, proteins with multiple l...
Autores principales: | Wan, Shibiao, Mak, Man-Wai, Kung, Sun-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582598/ https://www.ncbi.nlm.nih.gov/pubmed/23130999 http://dx.doi.org/10.1186/1471-2105-13-290 |
Ejemplares similares
-
Sparse regressions for predicting and interpreting subcellular localization of multi-label proteins
por: Wan, Shibiao, et al.
Publicado: (2016) -
HybridGO-Loc: Mining Hybrid Features on Gene Ontology for Predicting Subcellular Localization of Multi-Location Proteins
por: Wan, Shibiao, et al.
Publicado: (2014) -
Gene ontology based transfer learning for protein subcellular localization
por: Mei, Suyu, et al.
Publicado: (2011) -
Applying Support Vector Machines for Gene ontology based gene function prediction
por: Vinayagam, Arunachalam, et al.
Publicado: (2004) -
ProLoc-GO: Utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization
por: Huang, Wen-Lin, et al.
Publicado: (2008)