Cargando…

The university münster model surgery system for orthognathic surgery. Part II – KD-MMS

BACKGROUND: Model surgery is an integral part of the planning procedure in orthognathic surgery. Most concepts comprise cutting the dental cast off its socket. The standardized spacer plates of the KD-MMS provide for a non-destructive, reversible and reproducible means of maxillary and/or mandibular...

Descripción completa

Detalles Bibliográficos
Autores principales: Ehmer, Ulrike, Joos, Ulrich, Ziebura, Thomas, Flieger, Stefanie, Wiechmann, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582630/
https://www.ncbi.nlm.nih.gov/pubmed/23289956
http://dx.doi.org/10.1186/1746-160X-9-2
Descripción
Sumario:BACKGROUND: Model surgery is an integral part of the planning procedure in orthognathic surgery. Most concepts comprise cutting the dental cast off its socket. The standardized spacer plates of the KD-MMS provide for a non-destructive, reversible and reproducible means of maxillary and/or mandibular plaster cast separation. METHODS: In the course of development of the system various articulator types were evaluated with regard to their capability to provide a means of realizing the concepts comprised of the KD-MMS. Special attention was dedicated to the ability to perform three-dimensional displacements without cutting of plaster casts. Various utilities were developed to facilitate maxillary displacement in accordance to the planning. Objectives of this development comprised the ability to implement the values established in the course of two-dimensional ceph planning. RESULTS: The system - KD-MMS comprises a set of hardware components as well as a defined procedure. Essential hardware components are red spacer and blue mounting plates. The blue mounting plates replace the standard yellow SAM mounting elements. The red spacers provide for a defined leeway of 8 mm for three-dimensional movements. The non-destructive approach of the KD-MMS makes it possible to conduct different model surgeries with the same plaster casts as well as to restore the initial, pre-surgical situation at any time. Thereby, surgical protocol generation and gnathologic splint construction are facilitated. CONCLUSIONS: The KD-MMS hardware components in conjunction with the defined procedures are capable of increasing efficiency and accuracy of model surgery and splint construction. In cases where different surgical approaches need to be evaluated in the course of model surgery, a significant reduction of chair time may be achieved.