Cargando…

Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry

BACKGROUND: Cytokinins (CKs) are a group of plant growth regulators that are involved in several plant developmental processes. Despite the breadth of knowledge surrounding CKs and their diverse functions, much remains to be discovered about the full potential of CKs, including their relationship wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Farrow, Scott C, Emery, RJ Neil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583190/
https://www.ncbi.nlm.nih.gov/pubmed/23061971
http://dx.doi.org/10.1186/1746-4811-8-42
_version_ 1782475406433058816
author Farrow, Scott C
Emery, RJ Neil
author_facet Farrow, Scott C
Emery, RJ Neil
author_sort Farrow, Scott C
collection PubMed
description BACKGROUND: Cytokinins (CKs) are a group of plant growth regulators that are involved in several plant developmental processes. Despite the breadth of knowledge surrounding CKs and their diverse functions, much remains to be discovered about the full potential of CKs, including their relationship with the purine salvage pathway, and other phytohormones. The most widely used approach to query unknown facets of CK biology utilized functional genomics coupled with CK metabolite assays and screening of CK associated phenotypes. There are numerous different types of assays for determining CK quantity, however, none of these methods screen for the compendium of metabolites that are necessary for elucidating all roles, including purine salvage pathway enzymes in CK metabolism, and CK cross-talk with other phytohormones. Furthermore, all published analytical methods have drawbacks ranging from the required use of radiolabelled compounds, or hazardous derivatization reagents, poor sensitivity, lack of resolution between CK isomers and lengthy run times. RESULTS: In this paper, a method is described for the concurrent extraction, purification and analysis of several CKs (freebases, ribosides, glucosides, nucleotides), purines (adenosine monophosphate, inosine, adenosine, and adenine), indole-3-acetic acid, and abscisic acid from hundred-milligram (mg) quantities of Arabidopsis thaliana leaf tissue. This method utilizes conventional Bieleski solvents extraction, solid phase purification, and is unique because of its diverse range of detectable analytes, and implementation of a conventional HPLC system with a fused core column that enables good sensitivity without the requirement of a UHPLC system. Using this method we were able to resolve CKs about twice as fast as our previous method. Similarly, analysis of adenosine, indole-3-acetic acid, and abscisic acid, was comparatively rapid. A further enhancement of the method was the utilization of a QTRAP 5500 mass analyzer, which improved upon several aspects of our previous analytical method carried out on a Quattro mass analyzer. Notable improvements included much superior sensitivity, and number of analytes detectable within a single run. Limits of detection ranged from 2 pM for (9G)Z to almost 750 pM for indole-3-acetic acid. CONCLUSIONS: This method is well suited for functional genomics platforms tailored to understanding CK metabolism, CK interrelationships with purine recycling and associated hormonal cross-talk.
format Online
Article
Text
id pubmed-3583190
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35831902013-02-28 Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry Farrow, Scott C Emery, RJ Neil Plant Methods Methodology BACKGROUND: Cytokinins (CKs) are a group of plant growth regulators that are involved in several plant developmental processes. Despite the breadth of knowledge surrounding CKs and their diverse functions, much remains to be discovered about the full potential of CKs, including their relationship with the purine salvage pathway, and other phytohormones. The most widely used approach to query unknown facets of CK biology utilized functional genomics coupled with CK metabolite assays and screening of CK associated phenotypes. There are numerous different types of assays for determining CK quantity, however, none of these methods screen for the compendium of metabolites that are necessary for elucidating all roles, including purine salvage pathway enzymes in CK metabolism, and CK cross-talk with other phytohormones. Furthermore, all published analytical methods have drawbacks ranging from the required use of radiolabelled compounds, or hazardous derivatization reagents, poor sensitivity, lack of resolution between CK isomers and lengthy run times. RESULTS: In this paper, a method is described for the concurrent extraction, purification and analysis of several CKs (freebases, ribosides, glucosides, nucleotides), purines (adenosine monophosphate, inosine, adenosine, and adenine), indole-3-acetic acid, and abscisic acid from hundred-milligram (mg) quantities of Arabidopsis thaliana leaf tissue. This method utilizes conventional Bieleski solvents extraction, solid phase purification, and is unique because of its diverse range of detectable analytes, and implementation of a conventional HPLC system with a fused core column that enables good sensitivity without the requirement of a UHPLC system. Using this method we were able to resolve CKs about twice as fast as our previous method. Similarly, analysis of adenosine, indole-3-acetic acid, and abscisic acid, was comparatively rapid. A further enhancement of the method was the utilization of a QTRAP 5500 mass analyzer, which improved upon several aspects of our previous analytical method carried out on a Quattro mass analyzer. Notable improvements included much superior sensitivity, and number of analytes detectable within a single run. Limits of detection ranged from 2 pM for (9G)Z to almost 750 pM for indole-3-acetic acid. CONCLUSIONS: This method is well suited for functional genomics platforms tailored to understanding CK metabolism, CK interrelationships with purine recycling and associated hormonal cross-talk. BioMed Central 2012-10-12 /pmc/articles/PMC3583190/ /pubmed/23061971 http://dx.doi.org/10.1186/1746-4811-8-42 Text en Copyright © 2012 Farrow and Emery; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology
Farrow, Scott C
Emery, RJ Neil
Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry
title Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry
title_full Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry
title_fullStr Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry
title_full_unstemmed Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry
title_short Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry
title_sort concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583190/
https://www.ncbi.nlm.nih.gov/pubmed/23061971
http://dx.doi.org/10.1186/1746-4811-8-42
work_keys_str_mv AT farrowscottc concurrentprofilingofindole3aceticacidabscisicacidandcytokininsandstructurallyrelatedpurinesbyhighperformanceliquidchromatographytandemelectrospraymassspectrometry
AT emeryrjneil concurrentprofilingofindole3aceticacidabscisicacidandcytokininsandstructurallyrelatedpurinesbyhighperformanceliquidchromatographytandemelectrospraymassspectrometry