Cargando…
Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells
Caffeic acid esters have various biological activities, and we previously reported that undecyl caffeate (caffeic acid undecyl ester, CAUE), a new caffeic acid derivative, has strong pharmacological activity. The present study investigated the cytotoxicity of both CAUE and its parent compound, caffe...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583534/ https://www.ncbi.nlm.nih.gov/pubmed/23229564 http://dx.doi.org/10.3892/or.2012.2163 |
_version_ | 1782475437097615360 |
---|---|
author | TOMIZAWA, AYAKO KANNO, SYU-ICHI OSANAI, YUU GOTO, AKANE SATO, CHIZURU YOMOGIDA, SHIN ISHIKAWA, MASAAKI |
author_facet | TOMIZAWA, AYAKO KANNO, SYU-ICHI OSANAI, YUU GOTO, AKANE SATO, CHIZURU YOMOGIDA, SHIN ISHIKAWA, MASAAKI |
author_sort | TOMIZAWA, AYAKO |
collection | PubMed |
description | Caffeic acid esters have various biological activities, and we previously reported that undecyl caffeate (caffeic acid undecyl ester, CAUE), a new caffeic acid derivative, has strong pharmacological activity. The present study investigated the cytotoxicity of both CAUE and its parent compound, caffeic acid phenethyl ester (CAPE), and characterized the mechanisms by which they induce apoptosis in the human B cell leukemia cell line NALM-6. Treatment with CAUE reduced cell survival in NALM-6 cells but had no significant effect on the survival of normal lymphocytes. When assessing the 50% inhibitory concentration (IC(50)) for cytotoxicity, CAUE had 10-fold higher activity than CAPE in NALM-6 cells. CAUE treatment resulted in induction of apoptotic features in NALM-6 cells, including cleaved poly (ADP-ribose) polymerase and activated caspase-3. A caspase inhibitor completely blocked CAUE-induced apoptosis. CAUE treatment resulted in a concentration- and time-dependent decrease in both mitochondrial membrane potential and downregulation of Bcl-2 expression. Moreover, CAUE-induced apoptosis was enhanced in the Bcl-2 knockdown condition induced by small interfering RNA. These data suggest that CAUE-induced apoptosis was mediated via an apoptotic intrinsic pathway including mitochondrial damage and was caspase-dependent. These data also suggest that CAUE is a powerful anti-leukemic agent that acts via induction of apoptosis by mitochondrial damage and selective action in leukemia cells. |
format | Online Article Text |
id | pubmed-3583534 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-35835342013-02-28 Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells TOMIZAWA, AYAKO KANNO, SYU-ICHI OSANAI, YUU GOTO, AKANE SATO, CHIZURU YOMOGIDA, SHIN ISHIKAWA, MASAAKI Oncol Rep Articles Caffeic acid esters have various biological activities, and we previously reported that undecyl caffeate (caffeic acid undecyl ester, CAUE), a new caffeic acid derivative, has strong pharmacological activity. The present study investigated the cytotoxicity of both CAUE and its parent compound, caffeic acid phenethyl ester (CAPE), and characterized the mechanisms by which they induce apoptosis in the human B cell leukemia cell line NALM-6. Treatment with CAUE reduced cell survival in NALM-6 cells but had no significant effect on the survival of normal lymphocytes. When assessing the 50% inhibitory concentration (IC(50)) for cytotoxicity, CAUE had 10-fold higher activity than CAPE in NALM-6 cells. CAUE treatment resulted in induction of apoptotic features in NALM-6 cells, including cleaved poly (ADP-ribose) polymerase and activated caspase-3. A caspase inhibitor completely blocked CAUE-induced apoptosis. CAUE treatment resulted in a concentration- and time-dependent decrease in both mitochondrial membrane potential and downregulation of Bcl-2 expression. Moreover, CAUE-induced apoptosis was enhanced in the Bcl-2 knockdown condition induced by small interfering RNA. These data suggest that CAUE-induced apoptosis was mediated via an apoptotic intrinsic pathway including mitochondrial damage and was caspase-dependent. These data also suggest that CAUE is a powerful anti-leukemic agent that acts via induction of apoptosis by mitochondrial damage and selective action in leukemia cells. D.A. Spandidos 2013-02 2012-12-03 /pmc/articles/PMC3583534/ /pubmed/23229564 http://dx.doi.org/10.3892/or.2012.2163 Text en Copyright © 2013, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles TOMIZAWA, AYAKO KANNO, SYU-ICHI OSANAI, YUU GOTO, AKANE SATO, CHIZURU YOMOGIDA, SHIN ISHIKAWA, MASAAKI Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells |
title | Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells |
title_full | Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells |
title_fullStr | Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells |
title_full_unstemmed | Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells |
title_short | Induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in NALM-6 human B cell leukemia cells |
title_sort | induction of apoptosis by a potent caffeic acid derivative, caffeic acid undecyl ester, is mediated by mitochondrial damage in nalm-6 human b cell leukemia cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583534/ https://www.ncbi.nlm.nih.gov/pubmed/23229564 http://dx.doi.org/10.3892/or.2012.2163 |
work_keys_str_mv | AT tomizawaayako inductionofapoptosisbyapotentcaffeicacidderivativecaffeicacidundecylesterismediatedbymitochondrialdamageinnalm6humanbcellleukemiacells AT kannosyuichi inductionofapoptosisbyapotentcaffeicacidderivativecaffeicacidundecylesterismediatedbymitochondrialdamageinnalm6humanbcellleukemiacells AT osanaiyuu inductionofapoptosisbyapotentcaffeicacidderivativecaffeicacidundecylesterismediatedbymitochondrialdamageinnalm6humanbcellleukemiacells AT gotoakane inductionofapoptosisbyapotentcaffeicacidderivativecaffeicacidundecylesterismediatedbymitochondrialdamageinnalm6humanbcellleukemiacells AT satochizuru inductionofapoptosisbyapotentcaffeicacidderivativecaffeicacidundecylesterismediatedbymitochondrialdamageinnalm6humanbcellleukemiacells AT yomogidashin inductionofapoptosisbyapotentcaffeicacidderivativecaffeicacidundecylesterismediatedbymitochondrialdamageinnalm6humanbcellleukemiacells AT ishikawamasaaki inductionofapoptosisbyapotentcaffeicacidderivativecaffeicacidundecylesterismediatedbymitochondrialdamageinnalm6humanbcellleukemiacells |