Cargando…
Exploring power and parameter estimation of the BiSSE method for analyzing species diversification
BACKGROUND: There has been a considerable increase in studies investigating rates of diversification and character evolution, with one of the promising techniques being the BiSSE method (binary state speciation and extinction). This study uses simulations under a variety of different sample sizes (n...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583807/ https://www.ncbi.nlm.nih.gov/pubmed/23398853 http://dx.doi.org/10.1186/1471-2148-13-38 |
_version_ | 1782475483799093248 |
---|---|
author | Davis, Matthew P Midford, Peter E Maddison, Wayne |
author_facet | Davis, Matthew P Midford, Peter E Maddison, Wayne |
author_sort | Davis, Matthew P |
collection | PubMed |
description | BACKGROUND: There has been a considerable increase in studies investigating rates of diversification and character evolution, with one of the promising techniques being the BiSSE method (binary state speciation and extinction). This study uses simulations under a variety of different sample sizes (number of tips) and asymmetries of rate (speciation, extinction, character change) to determine BiSSE’s ability to test hypotheses, and investigate whether the method is susceptible to confounding effects. RESULTS: We found that the power of the BiSSE method is severely affected by both sample size and high tip ratio bias (one character state dominates among observed tips). Sample size and high tip ratio bias also reduced accuracy and precision of parameter estimation, and resulted in the inability to infer which rate asymmetry caused the excess of a character state. In low tip ratio bias scenarios with appropriate tip sample size, BiSSE accurately estimated the rate asymmetry causing character state excess, avoiding the issue of confounding effects. CONCLUSIONS: Based on our findings, we recommend that future studies utilizing BiSSE that have fewer than 300 terminals and/or have datasets where high tip ratio bias is observed (i.e., fewer than 10% of species are of one character state) should be extremely cautious with the interpretation of hypothesis testing results. |
format | Online Article Text |
id | pubmed-3583807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35838072013-03-08 Exploring power and parameter estimation of the BiSSE method for analyzing species diversification Davis, Matthew P Midford, Peter E Maddison, Wayne BMC Evol Biol Research Article BACKGROUND: There has been a considerable increase in studies investigating rates of diversification and character evolution, with one of the promising techniques being the BiSSE method (binary state speciation and extinction). This study uses simulations under a variety of different sample sizes (number of tips) and asymmetries of rate (speciation, extinction, character change) to determine BiSSE’s ability to test hypotheses, and investigate whether the method is susceptible to confounding effects. RESULTS: We found that the power of the BiSSE method is severely affected by both sample size and high tip ratio bias (one character state dominates among observed tips). Sample size and high tip ratio bias also reduced accuracy and precision of parameter estimation, and resulted in the inability to infer which rate asymmetry caused the excess of a character state. In low tip ratio bias scenarios with appropriate tip sample size, BiSSE accurately estimated the rate asymmetry causing character state excess, avoiding the issue of confounding effects. CONCLUSIONS: Based on our findings, we recommend that future studies utilizing BiSSE that have fewer than 300 terminals and/or have datasets where high tip ratio bias is observed (i.e., fewer than 10% of species are of one character state) should be extremely cautious with the interpretation of hypothesis testing results. BioMed Central 2013-02-11 /pmc/articles/PMC3583807/ /pubmed/23398853 http://dx.doi.org/10.1186/1471-2148-13-38 Text en Copyright ©2013 Davis et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Davis, Matthew P Midford, Peter E Maddison, Wayne Exploring power and parameter estimation of the BiSSE method for analyzing species diversification |
title | Exploring power and parameter estimation of the BiSSE method for analyzing species diversification |
title_full | Exploring power and parameter estimation of the BiSSE method for analyzing species diversification |
title_fullStr | Exploring power and parameter estimation of the BiSSE method for analyzing species diversification |
title_full_unstemmed | Exploring power and parameter estimation of the BiSSE method for analyzing species diversification |
title_short | Exploring power and parameter estimation of the BiSSE method for analyzing species diversification |
title_sort | exploring power and parameter estimation of the bisse method for analyzing species diversification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583807/ https://www.ncbi.nlm.nih.gov/pubmed/23398853 http://dx.doi.org/10.1186/1471-2148-13-38 |
work_keys_str_mv | AT davismatthewp exploringpowerandparameterestimationofthebissemethodforanalyzingspeciesdiversification AT midfordpetere exploringpowerandparameterestimationofthebissemethodforanalyzingspeciesdiversification AT maddisonwayne exploringpowerandparameterestimationofthebissemethodforanalyzingspeciesdiversification |