Cargando…

High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs

BACKGROUND: The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins. METHODS: Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols...

Descripción completa

Detalles Bibliográficos
Autores principales: Noti, John D., Blachere, Francoise M., McMillen, Cynthia M., Lindsley, William G., Kashon, Michael L., Slaughter, Denzil R., Beezhold, Donald H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583861/
https://www.ncbi.nlm.nih.gov/pubmed/23460865
http://dx.doi.org/10.1371/journal.pone.0057485
_version_ 1782475493730156544
author Noti, John D.
Blachere, Francoise M.
McMillen, Cynthia M.
Lindsley, William G.
Kashon, Michael L.
Slaughter, Denzil R.
Beezhold, Donald H.
author_facet Noti, John D.
Blachere, Francoise M.
McMillen, Cynthia M.
Lindsley, William G.
Kashon, Michael L.
Slaughter, Denzil R.
Beezhold, Donald H.
author_sort Noti, John D.
collection PubMed
description BACKGROUND: The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins. METHODS: Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols (<1 µM, 1–4 µM, and >4 µM aerodynamic diameters) adjacent to the breathing manikin’s mouth and also at other locations within the room. At constant temperature, the RH was varied from 7–73% and infectivity was assessed by the viral plaque assay. RESULTS: Total virus collected for 60 minutes retained 70.6–77.3% infectivity at relative humidity ≤23% but only 14.6–22.2% at relative humidity ≥43%. Analysis of the individual aerosol fractions showed a similar loss in infectivity among the fractions. Time interval analysis showed that most of the loss in infectivity within each aerosol fraction occurred 0–15 minutes after coughing. Thereafter, losses in infectivity continued up to 5 hours after coughing, however, the rate of decline at 45% relative humidity was not statistically different than that at 20% regardless of the aerosol fraction analyzed. CONCLUSION: At low relative humidity, influenza retains maximal infectivity and inactivation of the virus at higher relative humidity occurs rapidly after coughing. Although virus carried on aerosol particles <4 µM have the potential for remaining suspended in air currents longer and traveling further distances than those on larger particles, their rapid inactivation at high humidity tempers this concern. Maintaining indoor relative humidity >40% will significantly reduce the infectivity of aerosolized virus.
format Online
Article
Text
id pubmed-3583861
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35838612013-03-04 High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs Noti, John D. Blachere, Francoise M. McMillen, Cynthia M. Lindsley, William G. Kashon, Michael L. Slaughter, Denzil R. Beezhold, Donald H. PLoS One Research Article BACKGROUND: The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins. METHODS: Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols (<1 µM, 1–4 µM, and >4 µM aerodynamic diameters) adjacent to the breathing manikin’s mouth and also at other locations within the room. At constant temperature, the RH was varied from 7–73% and infectivity was assessed by the viral plaque assay. RESULTS: Total virus collected for 60 minutes retained 70.6–77.3% infectivity at relative humidity ≤23% but only 14.6–22.2% at relative humidity ≥43%. Analysis of the individual aerosol fractions showed a similar loss in infectivity among the fractions. Time interval analysis showed that most of the loss in infectivity within each aerosol fraction occurred 0–15 minutes after coughing. Thereafter, losses in infectivity continued up to 5 hours after coughing, however, the rate of decline at 45% relative humidity was not statistically different than that at 20% regardless of the aerosol fraction analyzed. CONCLUSION: At low relative humidity, influenza retains maximal infectivity and inactivation of the virus at higher relative humidity occurs rapidly after coughing. Although virus carried on aerosol particles <4 µM have the potential for remaining suspended in air currents longer and traveling further distances than those on larger particles, their rapid inactivation at high humidity tempers this concern. Maintaining indoor relative humidity >40% will significantly reduce the infectivity of aerosolized virus. Public Library of Science 2013-02-27 /pmc/articles/PMC3583861/ /pubmed/23460865 http://dx.doi.org/10.1371/journal.pone.0057485 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Noti, John D.
Blachere, Francoise M.
McMillen, Cynthia M.
Lindsley, William G.
Kashon, Michael L.
Slaughter, Denzil R.
Beezhold, Donald H.
High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs
title High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs
title_full High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs
title_fullStr High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs
title_full_unstemmed High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs
title_short High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs
title_sort high humidity leads to loss of infectious influenza virus from simulated coughs
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583861/
https://www.ncbi.nlm.nih.gov/pubmed/23460865
http://dx.doi.org/10.1371/journal.pone.0057485
work_keys_str_mv AT notijohnd highhumidityleadstolossofinfectiousinfluenzavirusfromsimulatedcoughs
AT blacherefrancoisem highhumidityleadstolossofinfectiousinfluenzavirusfromsimulatedcoughs
AT mcmillencynthiam highhumidityleadstolossofinfectiousinfluenzavirusfromsimulatedcoughs
AT lindsleywilliamg highhumidityleadstolossofinfectiousinfluenzavirusfromsimulatedcoughs
AT kashonmichaell highhumidityleadstolossofinfectiousinfluenzavirusfromsimulatedcoughs
AT slaughterdenzilr highhumidityleadstolossofinfectiousinfluenzavirusfromsimulatedcoughs
AT beezholddonaldh highhumidityleadstolossofinfectiousinfluenzavirusfromsimulatedcoughs