Cargando…
Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells
LeY (Lewis Y) is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Elevation of LeY is frequently observed in epithelial-derived cancers and is correlated to pathological staging and prognosis. To study the role of LeY on cancer cells, a stably LeY-overexpressing cell l...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584585/ https://www.ncbi.nlm.nih.gov/pubmed/22179544 http://dx.doi.org/10.3892/ijo.2011.1296 |
_version_ | 1782261041172840448 |
---|---|
author | LI, FEI-FEI LIU, JUAN-JUAN LIU, DA-WO LIN, BEI HAO, YING-YING CONG, JIAN-PING ZHU, LIAN-CHENG GAO, SONG ZHANG, SHU-LAN IWAMORI, MASAO |
author_facet | LI, FEI-FEI LIU, JUAN-JUAN LIU, DA-WO LIN, BEI HAO, YING-YING CONG, JIAN-PING ZHU, LIAN-CHENG GAO, SONG ZHANG, SHU-LAN IWAMORI, MASAO |
author_sort | LI, FEI-FEI |
collection | PubMed |
description | LeY (Lewis Y) is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Elevation of LeY is frequently observed in epithelial-derived cancers and is correlated to pathological staging and prognosis. To study the role of LeY on cancer cells, a stably LeY-overexpressing cell line, RMG-I-H, was developed previously by transfection of the α1,2-fucosyltransferase gene, a key enzyme that catalyzes the synthesis of LeY, into ovarian carcinoma-derived RMG-I cells. Our studies have shown that LeY is involved in the changes in biological behavior of RMG-I-H cells. However, the mechanism is still largely unknown. In this study, we determined the structural relationship and co-localization between LeY and TβRI/TβRII, respectively, and the potential cellular signaling mechanism was also investigated. We found that both TβRI and TβRII contain the LeY structure, and the level of LeY in TβRI and TβRII in RMG-I-H cells was significantly increased. Overexpression of LeY up-regulates the phosphorylation of ERK, Akt and down-regulates the phosphorylation of Smad2/3. In addition, the phosphorylation intensity was attenuated significantly by LeY monoantibody. These findings suggest that LeY is involved in the changes in biological behavior through TGF-β receptors via Smad, ERK/MAPK and PI3K/Akt signaling pathways. We suggest that LeY may be an important composition of growth factor receptors and could be an attractive candidate for cancer diagnosis and treatment. |
format | Online Article Text |
id | pubmed-3584585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-35845852013-03-04 Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells LI, FEI-FEI LIU, JUAN-JUAN LIU, DA-WO LIN, BEI HAO, YING-YING CONG, JIAN-PING ZHU, LIAN-CHENG GAO, SONG ZHANG, SHU-LAN IWAMORI, MASAO Int J Oncol Articles LeY (Lewis Y) is a difucosylated oligosaccharide carried by glycoconjugates on the cell surface. Elevation of LeY is frequently observed in epithelial-derived cancers and is correlated to pathological staging and prognosis. To study the role of LeY on cancer cells, a stably LeY-overexpressing cell line, RMG-I-H, was developed previously by transfection of the α1,2-fucosyltransferase gene, a key enzyme that catalyzes the synthesis of LeY, into ovarian carcinoma-derived RMG-I cells. Our studies have shown that LeY is involved in the changes in biological behavior of RMG-I-H cells. However, the mechanism is still largely unknown. In this study, we determined the structural relationship and co-localization between LeY and TβRI/TβRII, respectively, and the potential cellular signaling mechanism was also investigated. We found that both TβRI and TβRII contain the LeY structure, and the level of LeY in TβRI and TβRII in RMG-I-H cells was significantly increased. Overexpression of LeY up-regulates the phosphorylation of ERK, Akt and down-regulates the phosphorylation of Smad2/3. In addition, the phosphorylation intensity was attenuated significantly by LeY monoantibody. These findings suggest that LeY is involved in the changes in biological behavior through TGF-β receptors via Smad, ERK/MAPK and PI3K/Akt signaling pathways. We suggest that LeY may be an important composition of growth factor receptors and could be an attractive candidate for cancer diagnosis and treatment. D.A. Spandidos 2011-12-13 /pmc/articles/PMC3584585/ /pubmed/22179544 http://dx.doi.org/10.3892/ijo.2011.1296 Text en Copyright © 2012, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles LI, FEI-FEI LIU, JUAN-JUAN LIU, DA-WO LIN, BEI HAO, YING-YING CONG, JIAN-PING ZHU, LIAN-CHENG GAO, SONG ZHANG, SHU-LAN IWAMORI, MASAO Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells |
title | Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells |
title_full | Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells |
title_fullStr | Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells |
title_full_unstemmed | Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells |
title_short | Lewis Y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived RMG-I cells |
title_sort | lewis y regulates signaling molecules of the transforming growth factor β pathway in ovarian carcinoma-derived rmg-i cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584585/ https://www.ncbi.nlm.nih.gov/pubmed/22179544 http://dx.doi.org/10.3892/ijo.2011.1296 |
work_keys_str_mv | AT lifeifei lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT liujuanjuan lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT liudawo lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT linbei lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT haoyingying lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT congjianping lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT zhuliancheng lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT gaosong lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT zhangshulan lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells AT iwamorimasao lewisyregulatessignalingmoleculesofthetransforminggrowthfactorbpathwayinovariancarcinomaderivedrmgicells |