Cargando…
The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels
BACKGROUND AND THE PURPOSE OF THE STUDY: Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hyd...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584726/ https://www.ncbi.nlm.nih.gov/pubmed/23351340 http://dx.doi.org/10.1186/2008-2231-21-10 |
_version_ | 1782261058269872128 |
---|---|
author | Malana, Muhammad A Zohra, Rubab |
author_facet | Malana, Muhammad A Zohra, Rubab |
author_sort | Malana, Muhammad A |
collection | PubMed |
description | BACKGROUND AND THE PURPOSE OF THE STUDY: Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels. METHODS: Ter-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA) were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol% EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism. RESULTS AND MAJOR CONCLUSION: Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n) derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n > 0.5 > 1) showing swelling controlled mechanism. The mechanical strength and controlled release capability of the systems indicate that these co-polymeric hydrogels have a great potential to be used as colon drug delivery device through oral administration. |
format | Online Article Text |
id | pubmed-3584726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35847262013-03-11 The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels Malana, Muhammad A Zohra, Rubab Daru Research Article BACKGROUND AND THE PURPOSE OF THE STUDY: Hydrogels, being stimuli responsive are considered to be effective for targeted and sustained drug delivery. The main purpose for this work was to study the release behavior and kinetic evaluation of Tramadol HCl from chemically cross linked ter polymeric hydrogels. METHODS: Ter-polymers of methacrylate, vinyl acetate and acrylic acid cross linked with ethylene glycol dimethacrylate (EGDMA) were prepared by free radical polymerization. The drug release rates, dynamic swelling behavior and pH sensitivity of hydrogels ranging in composition from 1-10 mol% EGDMA were studied. Tramadol HCl was used as model drug substance. The release behavior was investigated at pH 8 where all formulations exhibited non-Fickian diffusion mechanism. RESULTS AND MAJOR CONCLUSION: Absorbency was found to be more than 99% indicating good drug loading capability of these hydrogels towards the selected drug substance. Formulations designed with increasing amounts of EGDMA had a decreased equilibrium media content as well as media penetrating velocity and thus exhibited a slower drug release rate. Fitting of release data to different kinetic models indicate that the kinetic order shifts from the first to zero order as the concentration of drug was increased in the medium, showing gradual independency of drug release towards its concentration. Formulations with low drug content showed best fitness with Higuchi model whereas those with higher concentration of drug followed Hixson-Crowell model with better correlation values indicating that the drug release from these formulations depends more on change in surface area and diameter of tablets than that on concentration of the drug. Release exponent (n) derived from Korse-Meyer Peppas equation implied that the release of Tramadol HCl from these formulations was generally non-Fickian (n > 0.5 > 1) showing swelling controlled mechanism. The mechanical strength and controlled release capability of the systems indicate that these co-polymeric hydrogels have a great potential to be used as colon drug delivery device through oral administration. BioMed Central 2013-01-18 /pmc/articles/PMC3584726/ /pubmed/23351340 http://dx.doi.org/10.1186/2008-2231-21-10 Text en Copyright ©2013 Malana and Zohra; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Malana, Muhammad A Zohra, Rubab The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels |
title | The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels |
title_full | The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels |
title_fullStr | The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels |
title_full_unstemmed | The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels |
title_short | The release behavior and kinetic evaluation of tramadol HCl from chemically cross linked Ter polymeric hydrogels |
title_sort | release behavior and kinetic evaluation of tramadol hcl from chemically cross linked ter polymeric hydrogels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584726/ https://www.ncbi.nlm.nih.gov/pubmed/23351340 http://dx.doi.org/10.1186/2008-2231-21-10 |
work_keys_str_mv | AT malanamuhammada thereleasebehaviorandkineticevaluationoftramadolhclfromchemicallycrosslinkedterpolymerichydrogels AT zohrarubab thereleasebehaviorandkineticevaluationoftramadolhclfromchemicallycrosslinkedterpolymerichydrogels AT malanamuhammada releasebehaviorandkineticevaluationoftramadolhclfromchemicallycrosslinkedterpolymerichydrogels AT zohrarubab releasebehaviorandkineticevaluationoftramadolhclfromchemicallycrosslinkedterpolymerichydrogels |