Cargando…
Protein Function Prediction using Text-based Features extracted from the Biomedical Literature: The CAFA Challenge
BACKGROUND: Advances in sequencing technology over the past decade have resulted in an abundance of sequenced proteins whose function is yet unknown. As such, computational systems that can automatically predict and annotate protein function are in demand. Most computational systems use features der...
Autores principales: | Wong, Andrew, Shatkay, Hagit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584852/ https://www.ncbi.nlm.nih.gov/pubmed/23514326 http://dx.doi.org/10.1186/1471-2105-14-S3-S14 |
Ejemplares similares
-
In-depth performance evaluation of PFP and ESG sequence-based function prediction methods in CAFA 2011 experiment
por: Chitale, Meghana, et al.
Publicado: (2013) -
Characterizing the state of the art in the computational assignment of gene function: lessons from the first critical assessment of functional annotation (CAFA)
por: Gillis, Jesse, et al.
Publicado: (2013) -
New directions in biomedical text annotation: definitions, guidelines and corpus construction
por: Wilbur, W John, et al.
Publicado: (2006) -
Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users
por: Shatkay, Hagit, et al.
Publicado: (2008) -
Figure and caption extraction from biomedical documents
por: Li, Pengyuan, et al.
Publicado: (2019)