Cargando…
Black carbon aerosol size in snow
The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observati...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584901/ https://www.ncbi.nlm.nih.gov/pubmed/23449011 http://dx.doi.org/10.1038/srep01356 |
_version_ | 1782261073187962880 |
---|---|
author | Schwarz, J. P. Gao, R. S. Perring, A. E. Spackman, J. R. Fahey, D. W. |
author_facet | Schwarz, J. P. Gao, R. S. Perring, A. E. Spackman, J. R. Fahey, D. W. |
author_sort | Schwarz, J. P. |
collection | PubMed |
description | The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall. |
format | Online Article Text |
id | pubmed-3584901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-35849012013-03-01 Black carbon aerosol size in snow Schwarz, J. P. Gao, R. S. Perring, A. E. Spackman, J. R. Fahey, D. W. Sci Rep Article The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall. Nature Publishing Group 2013-03-01 /pmc/articles/PMC3584901/ /pubmed/23449011 http://dx.doi.org/10.1038/srep01356 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Schwarz, J. P. Gao, R. S. Perring, A. E. Spackman, J. R. Fahey, D. W. Black carbon aerosol size in snow |
title | Black carbon aerosol size in snow |
title_full | Black carbon aerosol size in snow |
title_fullStr | Black carbon aerosol size in snow |
title_full_unstemmed | Black carbon aerosol size in snow |
title_short | Black carbon aerosol size in snow |
title_sort | black carbon aerosol size in snow |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584901/ https://www.ncbi.nlm.nih.gov/pubmed/23449011 http://dx.doi.org/10.1038/srep01356 |
work_keys_str_mv | AT schwarzjp blackcarbonaerosolsizeinsnow AT gaors blackcarbonaerosolsizeinsnow AT perringae blackcarbonaerosolsizeinsnow AT spackmanjr blackcarbonaerosolsizeinsnow AT faheydw blackcarbonaerosolsizeinsnow |