Cargando…

CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans

An enormous number of alternative pre–mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mec...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuroyanagi, Hidehito, Watanabe, Yohei, Hagiwara, Masatoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585155/
https://www.ncbi.nlm.nih.gov/pubmed/23468662
http://dx.doi.org/10.1371/journal.pgen.1003337
_version_ 1782261108979007488
author Kuroyanagi, Hidehito
Watanabe, Yohei
Hagiwara, Masatoshi
author_facet Kuroyanagi, Hidehito
Watanabe, Yohei
Hagiwara, Masatoshi
author_sort Kuroyanagi, Hidehito
collection PubMed
description An enormous number of alternative pre–mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a–4c and 7a–7b, of the Caenorhabditis elegans uncoordinated (unc)-32 gene, encoding the a subunit of V(0) complex of vacuolar-type H(+)-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA–binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA–binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive exons of the unc-32 gene.
format Online
Article
Text
id pubmed-3585155
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35851552013-03-06 CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans Kuroyanagi, Hidehito Watanabe, Yohei Hagiwara, Masatoshi PLoS Genet Research Article An enormous number of alternative pre–mRNA splicing patterns in multicellular organisms are coordinately defined by a limited number of regulatory proteins and cis elements. Mutually exclusive alternative splicing should be strictly regulated and is a challenging model for elucidating regulation mechanisms. Here we provide models of the regulation of two sets of mutually exclusive exons, 4a–4c and 7a–7b, of the Caenorhabditis elegans uncoordinated (unc)-32 gene, encoding the a subunit of V(0) complex of vacuolar-type H(+)-ATPases. We visualize selection patterns of exon 4 and exon 7 in vivo by utilizing a trio and a pair of symmetric fluorescence splicing reporter minigenes, respectively, to demonstrate that they are regulated in tissue-specific manners. Genetic analyses reveal that RBFOX family RNA–binding proteins ASD-1 and FOX-1 and a UGCAUG stretch in intron 7b are involved in the neuron-specific selection of exon 7a. Through further forward genetic screening, we identify UNC-75, a neuron-specific CELF family RNA–binding protein of unknown function, as an essential regulator for the exon 7a selection. Electrophoretic mobility shift assays specify a short fragment in intron 7a as the recognition site for UNC-75 and demonstrate that UNC-75 specifically binds via its three RNA recognition motifs to the element including a UUGUUGUGUUGU stretch. The UUGUUGUGUUGU stretch in the reporter minigenes is actually required for the selection of exon 7a in the nervous system. We compare the amounts of partially spliced RNAs in the wild-type and unc-75 mutant backgrounds and raise a model for the mutually exclusive selection of unc-32 exon 7 by the RBFOX family and UNC-75. The neuron-specific selection of unc-32 exon 4b is also regulated by UNC-75 and the unc-75 mutation suppresses the Unc phenotype of the exon-4b-specific allele of unc-32 mutants. Taken together, UNC-75 is the neuron-specific splicing factor and regulates both sets of the mutually exclusive exons of the unc-32 gene. Public Library of Science 2013-02-28 /pmc/articles/PMC3585155/ /pubmed/23468662 http://dx.doi.org/10.1371/journal.pgen.1003337 Text en © 2013 Kuroyanagi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Kuroyanagi, Hidehito
Watanabe, Yohei
Hagiwara, Masatoshi
CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans
title CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans
title_full CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans
title_fullStr CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans
title_full_unstemmed CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans
title_short CELF Family RNA–Binding Protein UNC-75 Regulates Two Sets of Mutually Exclusive Exons of the unc-32 Gene in Neuron-Specific Manners in Caenorhabditis elegans
title_sort celf family rna–binding protein unc-75 regulates two sets of mutually exclusive exons of the unc-32 gene in neuron-specific manners in caenorhabditis elegans
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585155/
https://www.ncbi.nlm.nih.gov/pubmed/23468662
http://dx.doi.org/10.1371/journal.pgen.1003337
work_keys_str_mv AT kuroyanagihidehito celffamilyrnabindingproteinunc75regulatestwosetsofmutuallyexclusiveexonsoftheunc32geneinneuronspecificmannersincaenorhabditiselegans
AT watanabeyohei celffamilyrnabindingproteinunc75regulatestwosetsofmutuallyexclusiveexonsoftheunc32geneinneuronspecificmannersincaenorhabditiselegans
AT hagiwaramasatoshi celffamilyrnabindingproteinunc75regulatestwosetsofmutuallyexclusiveexonsoftheunc32geneinneuronspecificmannersincaenorhabditiselegans