Cargando…

Joint Modeling of Multiple Social Networks to Elucidate Primate Social Dynamics: I. Maximum Entropy Principle and Network-Based Interactions

In a complex behavioral system, such as an animal society, the dynamics of the system as a whole represent the synergistic interaction among multiple aspects of the society. We constructed multiple single-behavior social networks for the purpose of approximating from multiple aspects a single comple...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Stephanie, Fushing, Hsieh, Beisner, Brianne A., McCowan, Brenda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585323/
https://www.ncbi.nlm.nih.gov/pubmed/23468833
http://dx.doi.org/10.1371/journal.pone.0051903
Descripción
Sumario:In a complex behavioral system, such as an animal society, the dynamics of the system as a whole represent the synergistic interaction among multiple aspects of the society. We constructed multiple single-behavior social networks for the purpose of approximating from multiple aspects a single complex behavioral system of interest: rhesus macaque society. Instead of analyzing these networks individually, we describe a new method for jointly analyzing them in order to gain comprehensive understanding about the system dynamics as a whole. This method of jointly modeling multiple networks becomes valuable analytical tool for studying the complex nature of the interaction among multiple aspects of any system. Here we develop a bottom-up, iterative modeling approach based upon the maximum entropy principle. This principle is applied to a multi-dimensional link-based distributional framework, which is derived by jointly transforming the multiple directed behavioral social network data, for extracting patterns of synergistic inter-behavioral relationships. Using a rhesus macaque group as a model system, we jointly modeled and analyzed four different social behavioral networks at two different time points (one stable and one unstable) from a rhesus macaque group housed at the California National Primate Research Center (CNPRC). We report and discuss the inter-behavioral dynamics uncovered by our joint modeling approach with respect to social stability.