Cargando…
Mutations in TMEM231 cause Meckel–Gruber syndrome
BACKGROUND: Meckel–Gruber syndrome (MKS) is a genetically heterogeneous severe ciliopathy characterised by early lethality, occipital encephalocele, polydactyly, and polycystic kidney disease. PURPOSE: To report genetic analysis results in two families in which all known MKS diseases genes have been...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585488/ https://www.ncbi.nlm.nih.gov/pubmed/23349226 http://dx.doi.org/10.1136/jmedgenet-2012-101431 |
Sumario: | BACKGROUND: Meckel–Gruber syndrome (MKS) is a genetically heterogeneous severe ciliopathy characterised by early lethality, occipital encephalocele, polydactyly, and polycystic kidney disease. PURPOSE: To report genetic analysis results in two families in which all known MKS diseases genes have been excluded. METHODS: In two consanguineous families with classical MKS in which autozygome-guided sequencing of previously reported MKS genes was negative, we performed exome sequencing followed by autozygome filtration. RESULTS: We identified one novel splicing mutation in TMEM231, which led to complete degradation of the mutant transcript in one family, and a novel missense mutation in the other, both in the homozygous state. CONCLUSIONS: TMEM231 represents a novel MKS locus. The very recent identification of TMEM231 mutations in Joubert syndrome supports the growing appreciation of the overlap in the molecular pathogenesis between these two ciliopathies. |
---|