Cargando…
Local functional descriptors for surface comparison based binding prediction
BACKGROUND: Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective methods for comparing surface regions can be used in identifying simi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585919/ https://www.ncbi.nlm.nih.gov/pubmed/23176080 http://dx.doi.org/10.1186/1471-2105-13-314 |
_version_ | 1782261235896549376 |
---|---|
author | Cipriano, Gregory M N, George Gleicher, Michael |
author_facet | Cipriano, Gregory M N, George Gleicher, Michael |
author_sort | Cipriano, Gregory M |
collection | PubMed |
description | BACKGROUND: Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective methods for comparing surface regions can be used in identifying similar regions, and to predict interactions without regard to the underlying structural scaffold that creates the surface. RESULTS: We present a new descriptor for protein functional surfaces and algorithms for using these descriptors to compare protein surface regions to identify ligand binding interfaces. Our approach uses descriptors of local regions of the surface, and assembles collections of matches to compare larger regions. Our approach uses a variety of physical, chemical, and geometric properties, adaptively weighting these properties as appropriate for different regions of the interface. Our approach builds a classifier based on a training corpus of examples of binding sites of the target ligand. The constructed classifiers can be applied to a query protein providing a probability for each position on the protein that the position is part of a binding interface. We demonstrate the effectiveness of the approach on a number of benchmarks, demonstrating performance that is comparable to the state-of-the-art, with an approach with more generality than these prior methods. CONCLUSIONS: Local functional descriptors offer a new method for protein surface comparison that is sufficiently flexible to serve in a variety of applications. |
format | Online Article Text |
id | pubmed-3585919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35859192013-03-03 Local functional descriptors for surface comparison based binding prediction Cipriano, Gregory M N, George Gleicher, Michael BMC Bioinformatics Research Article BACKGROUND: Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective methods for comparing surface regions can be used in identifying similar regions, and to predict interactions without regard to the underlying structural scaffold that creates the surface. RESULTS: We present a new descriptor for protein functional surfaces and algorithms for using these descriptors to compare protein surface regions to identify ligand binding interfaces. Our approach uses descriptors of local regions of the surface, and assembles collections of matches to compare larger regions. Our approach uses a variety of physical, chemical, and geometric properties, adaptively weighting these properties as appropriate for different regions of the interface. Our approach builds a classifier based on a training corpus of examples of binding sites of the target ligand. The constructed classifiers can be applied to a query protein providing a probability for each position on the protein that the position is part of a binding interface. We demonstrate the effectiveness of the approach on a number of benchmarks, demonstrating performance that is comparable to the state-of-the-art, with an approach with more generality than these prior methods. CONCLUSIONS: Local functional descriptors offer a new method for protein surface comparison that is sufficiently flexible to serve in a variety of applications. BioMed Central 2012-11-24 /pmc/articles/PMC3585919/ /pubmed/23176080 http://dx.doi.org/10.1186/1471-2105-13-314 Text en Copyright ©2012 Cipriano et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Cipriano, Gregory M N, George Gleicher, Michael Local functional descriptors for surface comparison based binding prediction |
title | Local functional descriptors for surface comparison based binding prediction |
title_full | Local functional descriptors for surface comparison based binding prediction |
title_fullStr | Local functional descriptors for surface comparison based binding prediction |
title_full_unstemmed | Local functional descriptors for surface comparison based binding prediction |
title_short | Local functional descriptors for surface comparison based binding prediction |
title_sort | local functional descriptors for surface comparison based binding prediction |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585919/ https://www.ncbi.nlm.nih.gov/pubmed/23176080 http://dx.doi.org/10.1186/1471-2105-13-314 |
work_keys_str_mv | AT ciprianogregorym localfunctionaldescriptorsforsurfacecomparisonbasedbindingprediction AT ngeorge localfunctionaldescriptorsforsurfacecomparisonbasedbindingprediction AT gleichermichael localfunctionaldescriptorsforsurfacecomparisonbasedbindingprediction |