Cargando…
Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae)
Variation in somatic growth rates is of great interest to biologists because of the relationship between growth and other fitness-determining traits, and it results from both genetic and environmentally induced variation (i.e. plasticity). Theoretical predictions suggest that mean somatic growth rat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586642/ https://www.ncbi.nlm.nih.gov/pubmed/23467582 http://dx.doi.org/10.1002/ece3.459 |
_version_ | 1782261334284435456 |
---|---|
author | Gale, Brittany H Johnson, Jerald B Bruce Schaalje, G Belk, Mark C |
author_facet | Gale, Brittany H Johnson, Jerald B Bruce Schaalje, G Belk, Mark C |
author_sort | Gale, Brittany H |
collection | PubMed |
description | Variation in somatic growth rates is of great interest to biologists because of the relationship between growth and other fitness-determining traits, and it results from both genetic and environmentally induced variation (i.e. plasticity). Theoretical predictions suggest that mean somatic growth rates and the shape of the reaction norm for growth can be influenced by variation in predator-induced mortality rates. Few studies have focused on variation in reaction norms for growth in response to resource availability between high-predation and low-predation environments. We used juvenile Brachyrhaphis rhabdophora from high-predation and low-predation environments to test for variation in mean growth rates and for variation in reaction norms for growth at two levels of food availability in a common-environment experiment. To test for variation in growth rates in the field, we compared somatic growth rates in juveniles in high-predation and low-predation environments. In the common-environment experiment, mean growth rates did not differ between fish from differing predation environments, but the interaction between predation environment and food level took the form of a crossing reaction norm for both growth in length and mass. Fish from low-predation environments exhibited no significant difference in growth rate between high and low food treatments. In contrast, fish from high-predation environments exhibited variation in growth rates between high and low food treatments, with higher food availability resulting in higher growth rates. In the field, individuals in the high-predation environment grow at a faster rate than those in low-predation environments at the smallest sizes (comparable to sizes in the common-environment experiment). These data provide no evidence for evolved differences in mean growth rates between predation environments. However, fish from high-predation environments exhibited greater plasticity in growth rates in response to resource availability suggesting that predation environments may exhibit increased variation in food availability for prey fish and consequent selection for plasticity. |
format | Online Article Text |
id | pubmed-3586642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Blackwell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-35866422013-03-05 Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae) Gale, Brittany H Johnson, Jerald B Bruce Schaalje, G Belk, Mark C Ecol Evol Original Research Variation in somatic growth rates is of great interest to biologists because of the relationship between growth and other fitness-determining traits, and it results from both genetic and environmentally induced variation (i.e. plasticity). Theoretical predictions suggest that mean somatic growth rates and the shape of the reaction norm for growth can be influenced by variation in predator-induced mortality rates. Few studies have focused on variation in reaction norms for growth in response to resource availability between high-predation and low-predation environments. We used juvenile Brachyrhaphis rhabdophora from high-predation and low-predation environments to test for variation in mean growth rates and for variation in reaction norms for growth at two levels of food availability in a common-environment experiment. To test for variation in growth rates in the field, we compared somatic growth rates in juveniles in high-predation and low-predation environments. In the common-environment experiment, mean growth rates did not differ between fish from differing predation environments, but the interaction between predation environment and food level took the form of a crossing reaction norm for both growth in length and mass. Fish from low-predation environments exhibited no significant difference in growth rate between high and low food treatments. In contrast, fish from high-predation environments exhibited variation in growth rates between high and low food treatments, with higher food availability resulting in higher growth rates. In the field, individuals in the high-predation environment grow at a faster rate than those in low-predation environments at the smallest sizes (comparable to sizes in the common-environment experiment). These data provide no evidence for evolved differences in mean growth rates between predation environments. However, fish from high-predation environments exhibited greater plasticity in growth rates in response to resource availability suggesting that predation environments may exhibit increased variation in food availability for prey fish and consequent selection for plasticity. Blackwell Publishing Ltd 2013-02 2013-01-07 /pmc/articles/PMC3586642/ /pubmed/23467582 http://dx.doi.org/10.1002/ece3.459 Text en © 2013 Published by Blackwell Publishing Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Research Gale, Brittany H Johnson, Jerald B Bruce Schaalje, G Belk, Mark C Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae) |
title | Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae) |
title_full | Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae) |
title_fullStr | Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae) |
title_full_unstemmed | Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae) |
title_short | Effects of predation environment and food availability on somatic growth in the Livebearing Fish Brachyrhaphis rhabdophora (Pisces: Poeciliidae) |
title_sort | effects of predation environment and food availability on somatic growth in the livebearing fish brachyrhaphis rhabdophora (pisces: poeciliidae) |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586642/ https://www.ncbi.nlm.nih.gov/pubmed/23467582 http://dx.doi.org/10.1002/ece3.459 |
work_keys_str_mv | AT galebrittanyh effectsofpredationenvironmentandfoodavailabilityonsomaticgrowthinthelivebearingfishbrachyrhaphisrhabdophorapiscespoeciliidae AT johnsonjeraldb effectsofpredationenvironmentandfoodavailabilityonsomaticgrowthinthelivebearingfishbrachyrhaphisrhabdophorapiscespoeciliidae AT bruceschaaljeg effectsofpredationenvironmentandfoodavailabilityonsomaticgrowthinthelivebearingfishbrachyrhaphisrhabdophorapiscespoeciliidae AT belkmarkc effectsofpredationenvironmentandfoodavailabilityonsomaticgrowthinthelivebearingfishbrachyrhaphisrhabdophorapiscespoeciliidae |