Cargando…
Computing eigenvectors of block tridiagonal matrices based on twisted block factorizations
New methods for computing eigenvectors of symmetric block tridiagonal matrices based on twisted block factorizations are explored. The relation of the block where two twisted factorizations meet to an eigenvector of the block tridiagonal matrix is reviewed. Based on this, several new algorithmic str...
Autores principales: | König, Gerhard, Moldaschl, Michael, Gansterer, Wilfried N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Koninklijke Vlaamse Ingenieursvereniging
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587346/ https://www.ncbi.nlm.nih.gov/pubmed/23471102 http://dx.doi.org/10.1016/j.cam.2011.07.010 |
Ejemplares similares
-
Comparison of eigensolvers for symmetric band matrices
por: Moldaschl, Michael, et al.
Publicado: (2014) -
The Double Dyson Index β Effect in Non-Hermitian Tridiagonal Matrices
por: Goulart, Cleverson A., et al.
Publicado: (2023) -
Controlled precision QUBO-based algorithm to compute eigenvectors of symmetric matrices
por: Krakoff, Benjamin, et al.
Publicado: (2022) -
Algorithms and programs of the critical-component method of inversion of tridiagonal matrices and solution of systems of linear equations
por: Emelyanenko, G A, et al.
Publicado: (1996) -
The bi-periodic Horadam sequence and some perturbed tridiagonal 2-Toeplitz matrices: A unified approach
por: Anđelić, Milica, et al.
Publicado: (2022)