Cargando…
Convergence of adaptive BEM for some mixed boundary value problem
For a boundary integral formulation of the 2D Laplace equation with mixed boundary conditions, we consider an adaptive Galerkin BEM based on an [Formula: see text]-type error estimator. We include the resolution of the Dirichlet, Neumann, and volume data into the adaptive algorithm. In particular, a...
Autores principales: | Aurada, M., Ferraz-Leite, S., Goldenits, P., Karkulik, M., Mayr, M., Praetorius, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
North-Holland
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587371/ https://www.ncbi.nlm.nih.gov/pubmed/23482570 http://dx.doi.org/10.1016/j.apnum.2011.03.008 |
Ejemplares similares
-
Estimator reduction and convergence of adaptive BEM
por: Aurada, Markus, et al.
Publicado: (2012) -
A posteriori error estimates for the Johnson–Nédélec FEM–BEM coupling
por: Aurada, M., et al.
Publicado: (2012) -
FEM–BEM coupling for the large-body limit in micromagnetics
por: Aurada, M., et al.
Publicado: (2015) -
ZZ-Type a posteriori error estimators for adaptive boundary element methods on a curve()
por: Feischl, Michael, et al.
Publicado: (2014) -
Mixed boundary value problems
por: Duffy, Dean G
Publicado: (2008)