Cargando…
Identifying regulational alterations in gene regulatory networks by state space representation of vector autoregressive models and variational annealing
BACKGROUND: In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene network structures between normal and treated cells is a key task. A possible way for identifying the changes is to compare structures of networks estimated from data on normal and treated cells...
Autores principales: | Kojima, Kaname, Imoto, Seiya, Yamaguchi, Rui, Fujita, André, Yamauchi, Mai, Gotoh, Noriko, Miyano, Satoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587380/ https://www.ncbi.nlm.nih.gov/pubmed/22369122 http://dx.doi.org/10.1186/1471-2164-13-S1-S6 |
Ejemplares similares
-
Modeling gene expression regulatory networks with the sparse vector autoregressive model
por: Fujita, André, et al.
Publicado: (2007) -
Computational gene network analysis reveals TNF-induced angiogenesis
por: Ogami, Kentaro, et al.
Publicado: (2012) -
Stability of building gene regulatory networks with sparse autoregressive models
por: Rajapakse, Jagath C, et al.
Publicado: (2011) -
Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization
por: Hasegawa, Takanori, et al.
Publicado: (2014) -
Identification of bacteriophage genome sequences with representation learning
por: Bai, Zeheng, et al.
Publicado: (2022)