Cargando…
Blocking Delaunay triangulations
Given a set B of n black points in general position, we say that a set of white points W blocks B if in the Delaunay triangulation of [Formula: see text] there is no edge connecting two black points. We give the following bounds for the size of the smallest set W blocking B: (i) [Formula: see text]...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587385/ https://www.ncbi.nlm.nih.gov/pubmed/23483043 http://dx.doi.org/10.1016/j.comgeo.2012.02.005 |
_version_ | 1782261393217552384 |
---|---|
author | Aichholzer, Oswin Fabila-Monroy, Ruy Hackl, Thomas van Kreveld, Marc Pilz, Alexander Ramos, Pedro Vogtenhuber, Birgit |
author_facet | Aichholzer, Oswin Fabila-Monroy, Ruy Hackl, Thomas van Kreveld, Marc Pilz, Alexander Ramos, Pedro Vogtenhuber, Birgit |
author_sort | Aichholzer, Oswin |
collection | PubMed |
description | Given a set B of n black points in general position, we say that a set of white points W blocks B if in the Delaunay triangulation of [Formula: see text] there is no edge connecting two black points. We give the following bounds for the size of the smallest set W blocking B: (i) [Formula: see text] white points are always sufficient to block a set of n black points, (ii) if B is in convex position, [Formula: see text] white points are always sufficient to block it, and (iii) at least [Formula: see text] white points are always necessary to block a set of n black points. |
format | Online Article Text |
id | pubmed-3587385 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-35873852013-03-06 Blocking Delaunay triangulations Aichholzer, Oswin Fabila-Monroy, Ruy Hackl, Thomas van Kreveld, Marc Pilz, Alexander Ramos, Pedro Vogtenhuber, Birgit Comput Geom Article Given a set B of n black points in general position, we say that a set of white points W blocks B if in the Delaunay triangulation of [Formula: see text] there is no edge connecting two black points. We give the following bounds for the size of the smallest set W blocking B: (i) [Formula: see text] white points are always sufficient to block a set of n black points, (ii) if B is in convex position, [Formula: see text] white points are always sufficient to block it, and (iii) at least [Formula: see text] white points are always necessary to block a set of n black points. Elsevier 2013-02 /pmc/articles/PMC3587385/ /pubmed/23483043 http://dx.doi.org/10.1016/j.comgeo.2012.02.005 Text en © 2013 Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Aichholzer, Oswin Fabila-Monroy, Ruy Hackl, Thomas van Kreveld, Marc Pilz, Alexander Ramos, Pedro Vogtenhuber, Birgit Blocking Delaunay triangulations |
title | Blocking Delaunay triangulations |
title_full | Blocking Delaunay triangulations |
title_fullStr | Blocking Delaunay triangulations |
title_full_unstemmed | Blocking Delaunay triangulations |
title_short | Blocking Delaunay triangulations |
title_sort | blocking delaunay triangulations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587385/ https://www.ncbi.nlm.nih.gov/pubmed/23483043 http://dx.doi.org/10.1016/j.comgeo.2012.02.005 |
work_keys_str_mv | AT aichholzeroswin blockingdelaunaytriangulations AT fabilamonroyruy blockingdelaunaytriangulations AT hacklthomas blockingdelaunaytriangulations AT vankreveldmarc blockingdelaunaytriangulations AT pilzalexander blockingdelaunaytriangulations AT ramospedro blockingdelaunaytriangulations AT vogtenhuberbirgit blockingdelaunaytriangulations |