Cargando…

Autoregressive models of singular spectral matrices()

This paper deals with autoregressive (AR) models of singular spectra, whose corresponding transfer function matrices can be expressed in a stable AR matrix fraction description [Formula: see text] with [Formula: see text] a tall constant matrix of full column rank and with the determinantal zeros of...

Descripción completa

Detalles Bibliográficos
Autores principales: Anderson, Brian D.O., Deistler, Manfred, Chen, Weitian, Filler, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pergamon Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587387/
https://www.ncbi.nlm.nih.gov/pubmed/23483210
http://dx.doi.org/10.1016/j.automatica.2012.05.047
_version_ 1782261393656905728
author Anderson, Brian D.O.
Deistler, Manfred
Chen, Weitian
Filler, Alexander
author_facet Anderson, Brian D.O.
Deistler, Manfred
Chen, Weitian
Filler, Alexander
author_sort Anderson, Brian D.O.
collection PubMed
description This paper deals with autoregressive (AR) models of singular spectra, whose corresponding transfer function matrices can be expressed in a stable AR matrix fraction description [Formula: see text] with [Formula: see text] a tall constant matrix of full column rank and with the determinantal zeros of [Formula: see text] all stable, i.e. in [Formula: see text]. To obtain a parsimonious AR model, a canonical form is derived and a number of advantageous properties are demonstrated. First, the maximum lag of the canonical AR model is shown to be minimal in the equivalence class of AR models of the same transfer function matrix. Second, the canonical form model is shown to display a nesting property under natural conditions. Finally, an upper bound is provided for the total number of real parameters in the obtained canonical AR model, which demonstrates that the total number of real parameters grows linearly with the number of rows in [Formula: see text].
format Online
Article
Text
id pubmed-3587387
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Pergamon Press
record_format MEDLINE/PubMed
spelling pubmed-35873872013-03-06 Autoregressive models of singular spectral matrices() Anderson, Brian D.O. Deistler, Manfred Chen, Weitian Filler, Alexander Automatica (Oxf) Brief Paper This paper deals with autoregressive (AR) models of singular spectra, whose corresponding transfer function matrices can be expressed in a stable AR matrix fraction description [Formula: see text] with [Formula: see text] a tall constant matrix of full column rank and with the determinantal zeros of [Formula: see text] all stable, i.e. in [Formula: see text]. To obtain a parsimonious AR model, a canonical form is derived and a number of advantageous properties are demonstrated. First, the maximum lag of the canonical AR model is shown to be minimal in the equivalence class of AR models of the same transfer function matrix. Second, the canonical form model is shown to display a nesting property under natural conditions. Finally, an upper bound is provided for the total number of real parameters in the obtained canonical AR model, which demonstrates that the total number of real parameters grows linearly with the number of rows in [Formula: see text]. Pergamon Press 2012-11 /pmc/articles/PMC3587387/ /pubmed/23483210 http://dx.doi.org/10.1016/j.automatica.2012.05.047 Text en © 2012 Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license
spellingShingle Brief Paper
Anderson, Brian D.O.
Deistler, Manfred
Chen, Weitian
Filler, Alexander
Autoregressive models of singular spectral matrices()
title Autoregressive models of singular spectral matrices()
title_full Autoregressive models of singular spectral matrices()
title_fullStr Autoregressive models of singular spectral matrices()
title_full_unstemmed Autoregressive models of singular spectral matrices()
title_short Autoregressive models of singular spectral matrices()
title_sort autoregressive models of singular spectral matrices()
topic Brief Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587387/
https://www.ncbi.nlm.nih.gov/pubmed/23483210
http://dx.doi.org/10.1016/j.automatica.2012.05.047
work_keys_str_mv AT andersonbriando autoregressivemodelsofsingularspectralmatrices
AT deistlermanfred autoregressivemodelsofsingularspectralmatrices
AT chenweitian autoregressivemodelsofsingularspectralmatrices
AT filleralexander autoregressivemodelsofsingularspectralmatrices