Cargando…
Recapture Heterogeneity in Cliff Swallows: Increased Exposure to Mist Nets Leads to Net Avoidance
Ecologists often use mark-recapture to estimate demographic variables such as abundance, growth rate, or survival for samples of wild animal populations. A common assumption underlying mark-recapture is that all animals have an equal probability of detection, and failure to meet or correct for this...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589455/ https://www.ncbi.nlm.nih.gov/pubmed/23472138 http://dx.doi.org/10.1371/journal.pone.0058092 |
Sumario: | Ecologists often use mark-recapture to estimate demographic variables such as abundance, growth rate, or survival for samples of wild animal populations. A common assumption underlying mark-recapture is that all animals have an equal probability of detection, and failure to meet or correct for this assumption–as when certain members of the population are either easier or more difficult to capture than other animals–can lead to biased and inaccurate demographic estimates. We built within-year and among-years Cormack-Jolly-Seber recaptures-only models to identify causes of capture heterogeneity for a population of colonially nesting cliff swallows (Petrochelidon pyrrhonota) caught using mist-netting as a part of a 20-year mark-recapture study in southwestern Nebraska, U.S.A. Daily detection of cliff swallows caught in stationary mist nets at their colony sites declined as the birds got older and as the frequency of netting at a site within a season increased. Experienced birds’ avoidance of the net could be countered by sudden disturbances that startled them into a net, such as when we dropped a net over the side of a bridge or flushed nesting cliff swallows into a stationary net positioned at a colony entrance. Our results support the widely held, but seldom tested, belief that birds learn to avoid stationary mist nets over time, but also show that modifications of traditional field methods can reduce this source of recapture heterogeneity. |
---|