Cargando…
Assessing the Effect of Quantitative and Qualitative Predictors on Gastric Cancer Individuals Survival Using Hierarchical Artificial Neural Network Models
BACKGROUND: There are numerous unanswered questions in the application of artificial neural network models for analysis of survival data. In most studies, independent variables have been studied as qualitative dichotomous variables, and results of using discrete and continuous quantitative, ordinal,...
Autores principales: | Amiri, Zohreh, Mohammad, Kazem, Mahmoudi, Mahmood, Parsaeian, Mahbubeh, Zeraati, Hojjat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kowsar
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3589778/ https://www.ncbi.nlm.nih.gov/pubmed/23486933 http://dx.doi.org/10.5812/ircmj.4122 |
Ejemplares similares
-
Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey
por: Parsaeian, M, et al.
Publicado: (2012) -
Estimating the Net Survival of Patients with Gastric Cancer in Iran in a Relative Survival Framework
por: Paknazar, Fatemeh, et al.
Publicado: (2018) -
Analyzing Gensini Score as a Semi-Continuous Outcome
por: Kashani, Homa, et al.
Publicado: (2016) -
Factors Affecting the Survival of Patients with Gastric Cancer Undergone Surgery at Iran Cancer Institute: Univariate and Multivariate Analyses
por: ZARE, Ali, et al.
Publicado: (2014) -
A Comparison between Accelerated Failure-time and Cox Proportional Hazard Models in Analyzing the Survival of Gastric Cancer Patients
por: ZARE, Ali, et al.
Publicado: (2015)